

 [image: _images/argus_logo.png]

Welcome to Argus Documentation

Contents:

	Argus Release notes
	Argus 1.7.3 (24-09-2022)

	Argus 1.7.2 (01-08-2017)

	Argus 1.7.1 (05-05-2017)

	Argus 1.7.0 (09-02-2016)

	Argus Authorization Service
	Summary

	Argus Service Installation

	Service Components

	Enabled Applications

	Support and Monitoring

	Development Information

	Additional Support

	About the name Argus

	Argus Concepts
	Argus Introduction

	Attribute Based Descriptions

	Identifiers within Argus

	Resource ID

	Conclusion

	Argus: Policy Administration Point (PAP)
	Summary

	Argus: Policy Decision Point (PDP)
	Summary

	Argus: Policy Enforcement Point Daemon (PEP)
	Summary

	Argus Monitoring
	Nagios Probes for Argus (UMD)

	Argus Operations
	Entropy related problems

	Bind services to localhost

	Firewall setup

	Mapping details

	Argus Quick Start Guide
	Argus Quick Start: Site Policy Setup

	Example of Authorization Requests and Policies
	User Based Authorization

	Per-VO Pilot Job Authorization Policy

	Argus Service Reference Card
	Definitions

	Service Reference Card

Indices and tables

	Index

	Module Index

	Search Page

Argus Release notes

Latest release:

	Argus 1.7.3 (24-09-2022)

Older releases:

	Argus 1.7.2 (01-08-2017)

	Argus 1.7.1 (05-05-2017)

	Argus 1.7.0 (09-02-2016)

Argus 1.7.3 (24-09-2022)

The Argus 1.7.3 release allows TLS protocol version to be configured on
pdp and pep server components and includes a fix for the PEP policy parser
in order to not fail in case of quoted commas or empty values for subjectdn.

Updated components

This release provides the following updated components:

	Argus PAP service version 1.7.3

	Argus PEP service version 1.7.4

	Argus PDP service version 1.7.1

	Argus PEP-API-C version 2.3.1

	Argus PEP-PDP-common version 1.5.2

Packages

Packages for this release can be obtained from the Argus product team package repository:

http://argus-authz.github.io/repo

Note that EL6/CENTOS6 packages are no longer provided.

Upgrade procedure

To install Argus 1.7.3:

	Update the packages:

yum update argus-pap argus-pdp argus-pdp-pep-common argus-pep-api-c argus-pep-server

	Restart the involved Argus services:

systemctl restart argus-pepd argus-pap argus-pdp

Main fixes

argus-pap-1.7.3 [https://github.com/argus-authz/argus-pap/releases/tag/v1.7.3]

	Update the default TLS protocol to TLSv1.2 [pap-20 [https://github.com/argus-authz/argus-pap/issues/20]]

argus-pep-server-1.7.4 [https://github.com/argus-authz/argus-pep-server/releases/tag/v1.7.4]

	Fix policy parser by allowing quoted commas and empty value [pep-34 [https://github.com/argus-authz/argus-pep-server/issues/34]]

	Configurable TLS protocol version [pep-25 [https://github.com/argus-authz/argus-pep-server/issues/25]]

argus-pdp-1.7.1 [https://github.com/argus-authz/argus-pdp/releases/tag/v1.7.1]

	TLS protocol version should be configurable [pdp-6 [https://github.com/argus-authz/argus-pdp/issues/6]]

Argus 1.7.2 (01-08-2017)

The Argus 1.7.2 release provides a fix for an X.509 DN parsing problem in the
PAP service.

Updated components

This release provides the following updated components:

	Argus PAP service version 1.7.2

Packages

Packages for this release can be obtained from the Argus product team package repository:

http://argus-authz.github.io/repo

Note that EL5/CENTOS5 packages are no longer provided (CENTOS5 is now out of support).

Upgrade procedure

To install Argus 1.7.2:

	Update the packages.

	Restart the Argus PAP service.

Main fixes

argus-pap-1.7.2 [https://github.com/argus-authz/argus-pap/milestone/2]

	PAP permissions don’t allow colon character in an X.509 subject principal [pap-16 [https://github.com/argus-authz/argus-pap/issues/16]].

Argus 1.7.1 (05-05-2017)

The Argus 1.7.1 release introduces support for different X.509 CA
Authentication profiles via the new Authentication Profile Policy Information
Point (PIP).

With this support, it is possible to define which authentication profiles are
enabled at the VO level, and for any trusted X.509 certificate. This first
level of authorization is implemented at the PEP server, that uses a special
policy file, called VO-CA-AP file, to determine which authentication profiles
are enabled.

Further, finer grained authorization can then be implemented as usual with
policies defined in the PAP using the newly introduced x509-authn-profile
attribute, in order to have differentiated access within resources of the same
VO.

In summary, the highlights of this release are:

	The new Authentication Profile PIP, which
provides support for different CA authentication profiles in Argus;

	The new x509-authn-profile XACML attribute, that allows to write level-of-assurance aware policies, in case
you need more flexibility than what is allowed by the VO-CA-AP file first level of authorization implememented in
the PEP server;

	The new x509-subject-issuer XACML attribute, which was introduced to simplify the development
of the Authentication Profile PIP.

Packages

Packages for this release can be obtained from the Argus product team package repository:

http://argus-authz.github.io/repo

Note that EL5/CENTOS5 packages are no longer provided (CENTOS5 is now out of support).

Service configuration

Instructions on how to configure the Authentication Profile PIP are provided in
the following section:

	Authentication Profile PIP configuration

Upgrade procedure

To install Argus 1.7.1 and obtain a system with the same behavior of the former releases:

	Update the packages.

	Reconfigure the services, manually or with a configuration management system
(such as Puppet, Ansible or Quattor).

	Restart the services.

Argus 1.7.1 comes with a default configuration that grants the access to
resources only to certificates issued by CAs in the classic, slcs and
mics IGTF profiles.

To enable IOTA CA support for selected VOs, you’ll need to:

	Install the IOTA CA RPM, that provides the IOTA CA certificates and the policy info files;

	Customize a VO-CA-AP policy file which states which authentication profiles are
enabled for VOs and trusted certificates.
This file can be provided by an RPM, such as lcmaps-plugins-vo-ca-ap package,
or written manually by the system administrator, with the syntax described
here [https://wiki.nikhef.nl/grid/Lcmaps-plugins-vo-ca-ap#vo-ca-ap-file].

	Edit the Argus PEP server configuration file (/etc/argus/pepd/pepd.ini)
to point the VO-CA-AP policy file, setting the
authenticationProfilePolicyFile property with the vo-ca-ap-file absolute path.

For example:

authenticationProfilePolicyFile = /etc/grid-security/vo-ca-ap-file

	Restart the services.

Main fixes

PEP Server

Milestone argus-pep-server-1.7.1 [https://github.com/argus-authz/argus-pep-server/milestone/2]:

	Introduce support for Authentication Profiles in Argus [pep-21 [https://github.com/argus-authz/argus-pep-server/issues/21]].

	Introduce new x509-subject-issuer and x509-authn-profile attributes [pep-22 [https://github.com/argus-authz/argus-pep-server/issues/22]].

PAP

Milestone argus-pap-1.7.1 [https://github.com/argus-authz/argus-pap/milestone/1]:

	Introduce new x509-subject-issuer and x509-authn-profile attributes [pap-14 [https://github.com/argus-authz/argus-pap/issues/14]], [pap-15 [https://github.com/argus-authz/argus-pap/issues/15]].

Argus 1.7.0 (09-02-2016)

The Argus 1.7.0 release provides fixes for some outstanding bugs and introduces
support for Centos 7. The highlights of this release are:

	Centos7 support

	Argus services now require Java 8

	Upgraded core dependencies to latest versions:

	Jetty upgraded to version 9.2.13.v20150730

	VOMS upgraded to version 3.1

	CANL upgraded to version 2.2.0

	OpenSAML upgraded to version 2.6.4

	Introduced a load testing test suite [https://github.com/argus-authz/load-testsuite] based on Grinder

	Introduced an integration test suite [https://github.com/argus-authz/argus-robot-testsuite] based on Robot Framework

	Documentation [http://argus-documentation.readthedocs.io] has been migrated to ReadTheDocs

Packages

Packages for this release can be obtained from the Argus product team package repository:

http://argus-authz.github.io/repo

Service configuration

Instructions on how to configure and run the services are provided in the
following documentation sections:

	Manual configuration

	YAIM configuration

Configuration for the services has not changed, so existing SL6 installation
can upgrade and reconfigure services as usual (YAIM on SL6 is still supported).

YAIM configuration support is not provided on CENTOS 7; sites are free to use
their favourite configuration management tool (Ansible, Puppet, Quattor) to
manage the Argus services.

Changes in the mapping logic behaviour (pep-7 [https://github.com/argus-authz/argus-pep-server/issues/7] , pep-11 [https://github.com/argus-authz/argus-pep-server/issues/11]), and in
particular in the handling of secondary group names, could produce different
mappings for user jobs, so it’s safer to drain the site before upgrading the
Argus services to version 1.7.0 if you want to avoid potential job failures
due to the upgrade. More details can be found here.

Note (added 2017-07-19):

If needed, to keep compatibility with the LCMAPS “-do_not_use_secondary_gids”
option used by the CREAM YAIM module, in Argus 1.7 you would need to add:

useSecondaryGroupNamesForMapping = false

in the [ACCOUNTMAP_OH] section of the /etc/argus/pepd/pepd.ini
and restart the service.

Main fixes

PDP-PEP-COMMON

	Update to CANL 2.2.0 to get more scalable certificate validation [pdp-pep-common-11 [https://github.com/argus-authz/argus-pdp-pep-common/issues/2]].

PEP Server

	Improper synchronization may lead to corrupted mappings in the Gridmapdir [pep-3 [https://github.com/argus-authz/argus-pep-server/issues/3]].

	Incorrect mapping for secondary group names [pep-7 [https://github.com/argus-authz/argus-pep-server/issues/7]] , [pep-11 [https://github.com/argus-authz/argus-pep-server/issues/11]] .

	Incorrect handling of CNs with internal slash characters [pep-9 [https://github.com/argus-authz/argus-pep-server/issues/9]].

PAP

	Init script fails if shutdown command is changed in configuration [pap-7 [https://issues.infn.it/jira/browse/ARGUS-7]].

	BDII for Argus cannot check service status [pap-8 [https://issues.infn.it/jira/browse/ARGUS-8]].

	Prevent to creation of policy rules with empty subject [pap-6 [https://github.com/argus-authz/argus-pap/issues/6]].

Argus Authorization Service

Summary

The Argus Authorization Service renders consistent authorization
decisions for distributed services (e.g., user interfaces, portals,
computing elements, storage elements). The service is based on the XACML
standard, and uses authorization policies to determine if a user is
allowed or denied to perform a certain action on a particular service.

The Argus Authorization Service is composed of three main components:

	The Policy Administration Point (PAP) provides the tools to author
authorization policies, organize them in the local repository and
configure policy distribution among remote PAPs.

	The Policy Decision Point (PDP) implements the authorization engine,
and is responsible for the evaluation of the authorization requests
against the XACML policies retrieved from the PAP.

	The Policy Enforcement Point Server (PEP Server) ensures the
integrity and consistency of the authorization requests received from
the PEP clients. Lightweight PEP client libraries are also provided
to ease the integration and interoperability with other EMI services
or components.

The following graphic shows the interaction between the components of
the service:

[image: _images/ARGUS_components.png]

Argus service components

Note: In Argus, the PEP is separated in a client/server
architecture. The PEP Server handles the lightweight PEP client
requests, and runs on the Argus node.

Argus Service Installation

The following section provides instructions for setting up an Argus
environment quickly. It does not provide an exhaustive description of
every possible deployment model or configuration option, that can be
found in the following Service Components and
Enabled Applications sections.

Before you continue it is recommend that you read this
introduction to the Argus system. This will provide you with a better
understanding of how the components work together, what information
passes between the components and how policies are formed.

Argus Deployment

The Argus Service is installed with YUM.
For the version 1.7, there isn’t an automatic configuration tool.
Older version are configured with YAIM.

Please follow the Argus Deployment for version 1.7
documentation.

gLExec Worker Node with Argus Deployment

To install and configure an Argus compatible gLExec worker node, follow
these GLExec Argus Quick Installation
Guide [https://wiki.nikhef.nl/grid/GLExec_Argus_Quick_Installation_Guide]

Service Components

If you are beginning to install the authorization service from scratch,
you should install the components in the order listed here; PAP, then
PDP, then PEPd. You don’t have to, but it makes the most sense for most
use cases.

PAP: Policy Administration Point

The Policy Administration Point (PAP) provides three major functions:

	Provide the tools for authoring policies

	Store and manage authored policies

	Provide managed policies to other authorization service components

	Installation

	Configuration

	Operation

PDP: Policy Decision Point

The Policy Decision Point (PDP) is a policy evaluation engine. The PDP
receives authorization requests from Policy Enforcement Points and
evaluates these requests against authorization policies retrieved from
the PAP.

	Installation

	Configuration

	Operation

	Troubleshooting

PEP: Policy Enforcement Point

The Policy Enforcement Point (PEP) is the client to the authorization
service. It gathers information relevant to an authorization request
(e.g. who the user, what action they are attempting to perform, which
service they are attempting to perform the action on, etc.) and sends
the request to the PDP for evaluation. The PEP then acts upon returned
result by allowing the request to proceed (in the case a positive
authorization decision) or by denying the action (in the event of a
negative decision).

In Argus, the PEP itself has a client/server architecture

	The PEP Server handles the lightweight PEP client requests, and runs on the
Argus node.

	Lightweight PEP client libraries are available to authorize
requests from the application side, and to enforce decision locally. There are
two variants available:

	PEP Client C API: Programming Interface (API)

	PEP Client Java API: Programming Interface (API)

	Installation

	Configuration

	Operation

	Troubleshooting

PEP command-line clients are also available

Enabled Applications

The following applications contain an Argus PEP client and can make
authorization requests to the Argus service.

Argus-enabled Applications

	GSI PEP Callout

	Introduction

	Installation

	Configuration

	Troubleshooting

	gLExec with PEP Plugin

	Introduction [https://wiki.nikhef.nl/grid/GLExec_Argus_Quick_Installation_Guide#Introduction]

	Installation [https://wiki.nikhef.nl/grid/GLExec_Argus_Quick_Installation_Guide#Package_installation]

	Configuration [https://wiki.nikhef.nl/grid/GLExec_Argus_Quick_Installation_Guide#Manual_configuration]

	Troubleshooting [https://wiki.nikhef.nl/grid/GLExec_Argus_Quick_Installation_Guide#Debugging_hints]

Support and Monitoring

GGUS Support

General support (installation, site administrator) for Argus is
available through GGUS [https://ggus.eu]

Argus Support Mailing List

Argus specific (developer, site administrator) questions can be sent
directly to the argus-support@googlegroups.com mailing
list [https://groups.google.com/d/forum/argus-support]. You don’t
need a Google email address or a Google account to send or receive
emails from this mailing list.

	Subscription: To subscribe to the support mailing list, simply
send an email to: argus-support+subscribe@googlegroups.com

	Unsubscribe: You can unsubscribe from the list at anytime by
sending an email to: argus-support+unsubscribe@googlegroups.com

NOTE: The mailing list was previously argus-support@cern.ch, but it
have been migrated to argus-support@googlegroups.com at the end of the
EMI project (April 2013).

Nagios Monitoring

Nagios plugins are available to monitor an Argus server.

	UMD: Argus Nagios Probes Documentation

Development Information

Argus is an open-source product hosted on GitHub [https://github.com/argus-authz]. In addition to this
user-oriented documentation, you can find a description of Argus architecture and main components at Argus
main site [http://argus-authz.github.io].

Specifications

	XACML 2.0 Specifications eXtensible Access Control Markup Language (XACML) Version 2.0 [http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf]

	SAML 2.0 Profile of XACML, Version 2 (Working Draft 5) [http://www.oasis-open.org/committees/download.php/24681/xacml-profile-saml2.0-v2-spec-wd-5-en.pdf]

	XACML Profile for the gLite WN XACML Grid Worker Node Authorization Profile (v. 1.0) [https://edms.cern.ch/document/1058175]

	XACML Profile for the gLite CE XACML Grid Computing Element Authorization Profile (v. 1.0) [https://edms.cern.ch/document/1078881/]

	XACML Authorization Profile for EMI Common XACML Authorization Profile (v. 1.1) [https://twiki.cern.ch/twiki/bin/view/EMI/CommonXACMLProfileV1_1]

Requirements

	Requirements Document [https://edms.cern.ch/document/944192]
(EDMS document 944192)

	Testing Plan [https://edms.cern.ch/document/986067] (EDMS
document 986067)

Presentations

	Argus - EMI Authorization Integration (EMI AH 2011, 31 May 2011, Lund)

	Argus - EMI Authorization Service (EGI UF 2011, 12 April 2011, Vilnus)

	Argus Security (EGI TF 2010 Security Session, 17 Sept. 2010, Amsterdam)

	General introduction to the authorization service

	Introduction to Argus for ROD (EGI ROD Workshop, 2 June 2010, Amsterdam)

Souce Code Information

The Argus source code is on GitHub [http://github.com].

	Argus Authorization Service: https://github.com/argus-authz

Development Tools

The Argus PT uses the following development tools.

For performance and load testing we use the following testing suite.

Argus Production Settings and Optimization

Production sites can optimize the Argus Service settings to their
specific needs. Please have a look at the Argus Service Fine Tuning documentation.

Perfomance and Load Testing

Argus provides a load testsuite, based on Grinder framework.

More information can be found on Argus load testsuite [https://github.com/argus-authz/load-testsuite].

Additional Support

	HERAS-AF [http://www.herasaf.org/index.php] project has supported
the project by providing a good XACML policy engine and excellent,
ongoing, support of their code.

	YourKit is kindly supporting this open source projects with its
full-featured Java Profiler. YourKit, LLC is the creator of
innovative and intelligent tools for profiling Java and .NET
applications. Take a look at YourKit’s leading software products:
YourKit Java Profiler [http://www.yourkit.com/java/profiler/index.jsp] and
YourKit .NET Profiler [http://www.yourkit.com/.net/profiler/index.jsp].

	This product includes software developed by the Caucho Technology [http://www.caucho.com/].

About the name Argus

In Greek mythology Argus was a 100-eyed giant that was meant to watch
and protect various things and people including the Goddess Io. He was
slain by Hermes but the gods chose to preserve his hundred eyes and
affix them to the tail-feathers of a brilliantly colored bird, the
peacock, in homage. The peacock logo is provided by the royalty free
clip art site clker.com [http://www.clker.com].

Argus Concepts

Argus Introduction

The Argus authorization service is designed to answer questions in the
form of Can user X perform action Y on resource Z at this time? Not
surprisingly, two pieces of information are required to answer this
question; the request that describes X, Y, and Z and the policy against
which the request is evaluated. The purpose of this introduction is to
provide an understanding of the logical contents of the request and the
policy. Such an understanding will help in creating appropriate access
control policies for a service. This introduction does not cover the
command line tools, simple policy language, or underlying XACML policies
used by the authorization service. That information can be found in the
Policy Administration Point documentation.

Attribute Based Descriptions

Before discussing the request and response it is important to understand
how users, actions, and resources are identified. Most grid deployers
will be familiar with X.509 subject distinguished names (DNs) based
access control. Access control systems which render authorization
decisions based only on an identifier, like a subject DN, are known as
identity-based access control systems. However, an application usually
knows more about a user than simply their identifier. It may know for
which organization the user works, or groups and professional
organizations to which the user belongs. An access control system which
can render a decision based on a set of attributes describing the
users/resources/actions is known as an attribute-based access control
system. Note, an attribute-based access control system where policies
are only based on an identifier attribute is functionally equivalent to
an identity-based access control system.

Argus is an attribute-based system. It uses attributes to identify the
user attempting to perform an action, the resource on which the action
is to be performed, the action itself, and other environmental
information. Within the system an attribute is made of 4 pieces of
information: a unique identifier/name, one or more values for the
attribute, the data type of the attribute values (e.g. a string, an
integer, an email address), and an optional identifier for the issuer of
the attribute. The following are examples of attribute based
descriptions.

In an identity based system a user (more properly known as a subject)
might have the identity ‘jsmith’. In an attribute based system the
subject might be identified by the following attributes:

	id

	datatype

	value

	subject-id

	string

	jsmith

	org

	string

	CERN

	affiliation

	string

	emplyee

	vo

	string

	lhcb, cms, atlas

In another example an action in an identity based access control system
might be identified by the string ‘submit-job’. In an attribute based
system the action might be identified with the following attributes:

	id

	datatype

	value

	action-id

	string

	submit-job

	pilot-job

	boolean

	false

	executable

	string

	/usr/bin/myexec

	expected-execution-duration

	integer

	10

The exact attributes available within a request are determined by the
application seeking an authorization decision. Obviously each unique
application will have different actions it wishes to protect, a
different means of describing itself, and possibly different information
about the subject. Also, as can be seen by these examples, the amount of
information upon which a decision could be based is larger within an
attribute based access control system than an identity based system. As
demonstrated, the single piece of identity data used in an identity
based system can also be used within an attribute based one.

The Request

An authorization decision request is simply a set of four different
attributes collections. The four collections are:

	subject - contains attribute describing user who is trying to
perform an action

	action - contains attributes describing the action the subject is
attempting to perform

	resource - contains attributes describing the program within which
the subject is attempting to perform the action

	environment - contains attributes relevant to the decision but not
part of the previous three collection (e.g. time/date of the request,
machine used by the subject, etc.).

A request must contain at least one attribute in each of the subject,
action, and resource sets but it is common for there to be no
environment attributes.

The Policy

A policy is a collection of rules that are evaluated to determine the
result of an authorization request. The result of a policy evaluation
may be:

	permit - indicates the subject is permitted to perform the action
on the resource

	deny - indicates the subject is not permitted to perform the action
on the resource

	not applicable - indicates no policy applied to the request and so
no decision could be reached

	indeterminate - indicates there was an error evaluating the policy

In order to determine whether a rule is met each rule contains a
target. The target defines one or more combination of attribute which
trigger the rule. When more than one combination is listed any one may
trigger the rule. For example, the target of a rule may stipulate the
following combination:

	subject attribute vo has a value of atlas and the id of the
action is job-submit and the id of the resource is cern-ce

	subject attribute id has a value of john and the id of the
action is job-submit and the id of the resource is cern-ce

	subject attribute id has a value of jane and the id of the
action is job-submit and the id of the resource is cern-ce

As you can see, each combination of attributes within the target needs
to be complete (that is they need to describe the whole situation that
would trigger a rule), there is no mechanism for expressing logical
operations like AND, OR, NOT. As you can imagine this could lead to a
lot of repeated information. To help alleviate this, policies, the
container of rules, can also contain targets. Therefore the previous
rule target could be written as follows:

	A policy with target: the id of the action is job-submit and
the id of the resource is cern-ce

	A permit rule with the target combination:

	subject attribute vo has a value of atlas

	subject attribute id has a value of john

	subject attribute id has a value of jane

You can also have multiple rules within a single policy, for example:

	A policy with target: the id of the action is job-submit and
the id of the resource is cern-ce

	A permit rule with the target combinations:

	subject attribute vo has a value of atlas

	subject attribute id has a value of john

	subject attribute id has a value of jane

	A deny rule with the target combinations:

	subject attribute id has a value of christoph

In fact, policies can even contain other policies which helps in the
case where you may want a policy about a resource which in turn contains
a policy about actions (at that resource) and finally rules for that
action. For example:

	A policy with target: id of the resource is cern-ce contains:

	A policy with target: the id of the action is job-submit

	A permit rule with the target combination:

	subject attribute vo has a value of atlas

	A deny rule with the target combination:

	subject attribute id has a value of christoph

	A policy with target: the id of the action is job-manage

	A permit rule with the target combination:

	subject attribute id has a value of john

	subject attribute id has a value of jane

Not Applicable and Indeterminate Results

In some cases, either because no policy applied to the request or
because there was an internal error evaluating a policy, a decision
other than permit or deny is returned. In the event that a
result of not applicable or indeterminate is returned Argus will
treat this as a deny. Thus Argus is said to be a deny biased
system.

Example Requests and Policies

Look at the dedicated page for request and policy examples.

Identifiers within Argus

Argus makes use of various identifiers for attribute identifiers and
values. The identifiers must by
URIs [http://tools.ietf.org/html/rfc3986]
(URNs [http://tools.ietf.org/html/rfc2141] or URLs). The
responsibility for defining such identifiers falls to different
individuals, depending on the expected scope of use of the identifiers.

Entity ID

For those familiar with other grid services one of the first differences
that you will encounter when setting up Argus is the requirement to
provide entity IDs for the service components. These IDs provide a way
of uniquely identify a logical service component. We use the term
“logical service component” because each service component may be
clustered. So the logical instance is the set containing all the
physical instances participating in the cluster.

It is the deployer of service component that determines this identifier.
The identifier may be any URI for which the deployer is authoritative.
That is, it must come from a domain (in the case of a URL) or namespace
(in the case of a URN) that the deployer controls. The following formula
is a reasonable means for generating these identifiers:
http://{authz_domain}/{service_component_identifier}. The domain
should be a domain name that is not linked to any particular servers
hostname but is instead related to the service (e.g. authz.example.org).
The component identifier should be pap, pdp, or pepd
depending on which component is being installed.

If an organization runs more than one component an additional qualifier
may be added to appended to the path of the URL identifier. For example
an organization that runs a different PEPd for each computer cluster
they operate might choose the entity IDs
http://authz.example.org/pepd/cluster1 and
http://authz.example.org/pepd/cluster2

Resource ID

The resource identifier used to identify the resource being protected by
the authorization service (e.g. a compute cluster, a portal). This
identifier is specific to a given instance of the resource. If an
organization runs two different portals each portal receives a different
ID. These identifiers may then be used within a policy in order to
indicate policies that apply to the specific resource (i.e. policy A
applies to portal 1 and policy B applies to portal 2).

The resource identifier is selected by the deployer of the resource. Two
reasonable ways for generating this identifier are:

	if the resource has a natural URI identifier associated with it (e.g.
the main page of the portal) that may be used

	if the resource does not have a natural URI identifier a synthetic
one may be created with the following formula:
http://{authz_domain}/resource/{resource_identifier} The
authz_domain should be a domain name that is not linked to any
particular server’s hostname but is instead related to the
authorization service (e.g. authz.example.org). The resource
identifier is simply a unique string for the protected resource. A
human intelligible string is best (e.g. sequencingPortal).

Action ID

The action identifier is used to identify the action for which the
resource is requesting authorization. This action identifier is specific
to a given piece of software but all instances of that application use
the same identifier for a given action, it is not deployment specific.

The action identifier is selected by the developer of the application.
The identifier may be generated in one of two ways:

	If the application is widely used a request could be made to a
standards body, such as IANA [http://www.iana.org/protocols], for
an unique identifier for each action of the application. This way all
implementations of the specification will likely use the same
identifier and thus make it a bit easier for policy writers.

	The application developer may generate an identifier. A reasonable
formula for such an identifier is:
http://{application_domain_name}/{application_name}/action/{action_id}
where the domain name is the domain component of the application’s
website and the action ID is a human readable string for the action (e.g. readFile,
addUser)

Attribute ID

The attributes produced by an application identify bits of information
that the application was able to gather and make available for an
authorization request. The identifiers are specific to a given piece of
software but all instances of that application use the same identifier
for a given attribute, it is not deployment specific.

The attribute identifier is selected by the developer of the
application. The identifier may be generated in a couple of ways:

	If the attribute is already defined by an existing standard (the LDAP
schema standards are a great place to start looking) the identifier
from that standard may be used. In the case of the LDAP schema the
URN urn:oid:{ldap_attribute_oid} can be used.

	If the attribute is likely to be widely used a request could be made
to a standards body, such as
IANA [http://www.iana.org/protocols], for an unique identifier
for this attribute. This way all implementations of the specification
will likely use the same identifier and thus make it a bit easier for
policy writers.

	The application developer may generate an identifier. A reasonable
formula for such an identifier is:
http://{application_domain_name}/{application_name}/attribute/{attribute_id}
where the domain name is the domain component of the application’s
website and the attribute ID is a human readable string for the
attribute (e.g. username, entitlements)

In general, application developers should prefer already defined
attributes over creating their own.

Conclusion

At this point you should understand what an attribute is, that a request
is a made of subject, action, resource, and environment attributes, what
a rule is and that policies are a collection of rules. You should also
understand that a policy or rule is triggered if any one of the
combination of attribute/values listed within its target is present
within the request.

Argus: Policy Administration Point (PAP)

The Policy Administration Point (PAP) provides three major functions:

	Provide the tools for authoring policies

	Store and manage authored policies

	Provide managed policies to other authorization service components

Summary

	Argus Policy Administration Point (PAP) Installation

	Argus Policy Administration Point (PAP): Configuration
	Configuration Files

	Service configuration file

	Service Access Control

	Environment file

	Argus: Policy Administration Point (PAP): Operation
	Service Operation Commands

	Service Ports

	Service Endpoints

	Service Logs

	Argus Policy Administration Point (PAP): Administration
	Running the pap-admin client

	Policy Management Commands

	PAP Management Commands

	Authorization Management Commands

	The Simplified Policy Language
	The SPL syntax

	Identifying actions and resources

	Identifying subjects

	The contents of the rule stanza

	How policies are evaluated

	The obligation stanza

	Examples

	Argus: Policy Administration Point (PAP): Known Issues

Argus Policy Administration Point (PAP) Installation

To deploy the Argus PAP service, please follow the documentation
Argus Deployment.

Argus Policy Administration Point (PAP): Configuration

Configuration Files

The PAP is configured through the use of two files:
pap_configuration.ini and pap_authorization.ini, located in the
/etc/argus/pap directory.
Most of the information contained in these files can also be set through the
command line interface (which is the recommended way to do
configuration on the PAP).

There is also an environment file,
located in /etc/sysconfig/argus-pap,
that contains environment variables used by the init script that manage the
service.

Service configuration file

The service is primarily configured through the
pap_configuration.ini configuration file. This file is a standard
INI file with five defined sections.

Section: [paps]

This section contains configuration about PAPs. The information in this
section should be set via the PAP CLI.

A PAPs can be defined by providing the following information (the R
value in the Required? column indicates information that is required
only for remote PAPs):

	Property

	Description

	Required?

	Default Value

	alias.type

	Defines a PAP as local or remote .

	Y

	None

	alias.public

	Visibility of the PAP: true or false. If false its policies are not sent to other PAPs.

	N

	false

	alias.enabled

	true or false. If false its policies are not sent to PDPs.

	N

	false

	alias.dn

	DN of the PAP to get policies from.

	R

	None

	alias.hostname

	Hostname of the PAP to get policies from.

	R

	None

	alias.port

	Port of the PAP to get policies from.

	N

	8150

	alias.path

	Path of the services exposed by the PAP to get policies from.

	N

	/pap/services

	alias.protocol

	Protocol to use to contact the remote PAP.

	N

	https

Section: [paps:properties]

This section contains information about policy distribution and PAP
ordering.

	Property

	Description

	Required?

	Default Value

	poll_interval

	The polling interval (in seconds) for retrieving remote policies.

	Y

	None. Recommended value is 14400 (4 hours).

	ordering

	Comma separated list of PAP aliases. Example: alias-1, alias-2, …, alias-n. Defines the order of evaluation of the policies of the PAPs, that means that the policies of PAP “alias-1” are evaluated for first, then the policies of PAP “alias-2” and so on.

	N

	If not specified the default pap is always the first one.

Section: [repository]

This section contains information about the PAP policy repository.

	Property

	Description

	Required?

	Default Value

	location

	Path to the repository directory.

	N

	$PAP_HOME/repository

	consistency_check

	Forces a consistency check of the repository at startup.

	N

	false

	consistency_check.repair

	if set to true automatically fixes problems detected by the consistency check (usually means deleting the corrupted policies).

	N

	false

Section: [standalone-service]

This section contains information about the PAP standalone service.

	Property

	Description

	Required?

	Default Value

	hostname

	The hostname or IP address the service will bind to

	N

	127.0.0.1

	port

	The service port number

	N

	8150

	shutdown_port

	The service shutdown port number

	N

	8151

	shutdown_command

	The command string that must be received on the shutdown port in order to shutdown the service. The command is needed in order to prevent unauthorized shutdown commands coming from localhost. This is effective only if the pap_configuration.ini file is not world-readable. If the option is not present in configuration, no check on the command will be made.

	N

	shutdown

	entity_id

	This is a unique identifier for the PAP. It must be a URI (URL or URN). If a URL is used it need not resolve to any specific webpage.

	N

	The service endpoint, e.g. https://pap.cern.ch:8150/pap/services/ProvisioningService

Section: [security]

This sections contains information about PAP security configuration.

	Property

	Description

	Required?

	Default Value

	certificate

	The X.509 pem-econded service certificate

	Y

	/etc/grid-security/hostcert.pem

	private_key

	The unencrypted private key bound to the certificate

	Y

	/etc/grid-security/hostkey.pem

	trust_store_dir

	The directory where CA files and CRL are looked for

	N

	/etc/grid-security/certificates

	crl_update_interval

	How frequently the PAP should update CRLs, CAs and namespaces from the filesystem. The interval is defined as a string with the following format: N{s,m,h,d} where N in the number of either (s=seconds, m=minutes, h=hours, d=days).

	N

	30m

Service Access Control

Access control rules are configured through the
pap_authorization.ini configuration file. Authorization is based on
off of the Subject DN or VOMS attribute within the client certificate
used to authenticate to the PAP.

PAP permissions

The authorization layer is based on an Access Control List (ACL),
composed of several Access Control Entries (ACEs). Each ACE defines the
actions that an administrator is allowed to execute on the PAP.
Administrators’ privileges are defined in terms of PAP permission flags,
whose meaning is described in the table below:

	Permission Flag

	Meaning

	POLICY_READ_LOCAL

	Allows read access to locally defined policies

	POLICY_READ_REMOTE

	Allows read access to policies imported from remote PAPs

	POLICY_WRITE

	Allows write access to locally defined policies

	CONFIGURATION_READ

	Allows read access to PAP configuration

	CONFIGURATION_WRITE

	Allows write access to PAP configuration

	ALL

	All of the above permissions

A set of permission flags can be assigned to an administrator by
defining an ACE in the pap_authorization.ini configuration file or
by using the authorization management commands provided by the
pap-admin command line interface.

ACEs are expressed as

<principal> : <permission>

couples.

The principal part of the ACE is either:

	ANYONE, to assign privileges to any authenticated user (i.e., any
user that presents a trusted certificate).

	a VOMS FQAN, e.g., /atlas/Role=VO-Admin

	a quoted X509 certificate subject, e.g.,
"/C=IT/O=INFN/OU=Personal Certificate/L=CNAF/CN=Andrea Ceccanti"

The permission part of the ACE is either:

	a single PAP permission flag, e.g CONFIGURATION_READ

	a | separated list of PAP permission flags, e.g.
POLICY_READ_LOCAL|CONFIGURATION_READ, to grant a set of
permissions.

So, for example, to grant POLICY_READ_LOCAL and
POLICY_READ_REMOTE permissions to a user identified by an x509
certificate with
/C=IT/O=INFN/OU=Personal Certificate/L=CNAF/CN=Andrea Ceccanti
subject, one should write:

"/C=IT/O=INFN/OU=Personal Certificate/L=CNAF/CN=Andrea Ceccanti" : POLICY_READ_LOCAL|POLICY_READ_REMOTE

Note that the subject has been put into quotes! For VOMS FQANs this is
not needed (FQAN syntax does not allow whitespaces inside the FQAN), so
one could write:

/atlas/Role=PAP-Admin : ALL

Authorization entries are loaded at PAP service startup time so any
pap_authorization.ini modifications done “by hand” while the PAP
service is running do not take effect until the PAP service is
restarted.

To modify the PAP authorization configuration at runtime, use the
authorization management commands provided by the pap-admin CLI.
Changes made to the PAP ACL by these commands are immediately reflected
on the pap_authorization.ini file.

Configuration File Syntax

In the pap_authorization.ini file, ACEs are grouped in two stanzas
according to the type of the principal. Currently, two stanzas are
supported:

	[dn], that lists ACEs defined for principals identified by an
X509 certificate subject.

	[fqan], that lists ACEs defined for principals identified by VOMS
fqans.

An example of configuration file is given below:

[dn]

"/C=IT/O=INFN/OU=Personal Certificate/L=CNAF/CN=Andrea Ceccanti" : ALL

ANYONE : CONFIGURATION_READ|CONFIGURATION_WRITE

[fqan]

/voms-ws/Role=PAP-Admin : ALL

Environment file

In the /etc/sysconfig/argus-pap file are defined Argus PAP environment variables,
described in the table below.

	Variable

	Default value

	Meaning

	PAP_HOME

	/usr/share/argus/pap

	Absolute path of PAP installation directory

	PAP_RUN_FILE

	/var/run/argus-pap.pid

	Absolute path of PAP service PID

	PAP_JAVA_OPTS

	empty

	Optional parameters to pass to the JVM when PAP service is started/stopped

Argus: Policy Administration Point (PAP): Operation

Service Operation Commands

	Start the PAP service

	

	Platform

	Command

	EL6

	service argus-pap start

	EL7

	systemctl start argus-pap

	Stop the PAP service

	

	Platform

	Command

	EL6

	service argus-pap start

	EL7

	systemctl start argus-pap

Service Ports

	Default service port: 8150

	Default shutdown service and status port: 8151

Service Endpoints

	/pap/services/ProvisioningService :

	this endpoint provides the policy provisioning interface

	/shutdown :

	this endpoint instructs the PAP standalone service to
shutdown and is reachable only from localhost on the configured
shutdown and status port

	/status :

	this endpoint provides current status information on
the PAP is reachable only from localhost on the configured shutdown
and status port

All the web services implemented by the PAP can be reached at the
/pap/services/ context.

Service Logs

The PAP standalone log file (pap-standalone.log) can be found in
the $PAP_HOME/logs directory. If the PAP is deployed on top of
tomcat, the log file (pap.log) can be found in the
$CATALINA_HOME/logs directory.

Argus Policy Administration Point (PAP): Administration

The CLI (Command Line Interface) allows to perform all of the policy
management operations as well as to set most of the configuration
information of the PAP including authorization settings. All these
operations are accessible by means of (sub)commands of the PAP CLI and
they are divided in three sections: policy management, pap management
and authorization management.

The command to invoke the CLI is pap-admin.

Running the pap-admin client

Type:

pap-admin --help

to get a list of the commands supported by the current version of the
PAP command line client.

The general usage is the following:

usage: pap-admin [global-options] <command> [options] [args]

	global-options : are options shared by all commands (all these
options are reported by --help).

	command : the command to perform.

	options : command specific options.

Type:

pap-admin <command> --help

to see the available command specific options.

Global options:

	-h,--help: help message;

	-v,--verbose: set verbose commands output;

	--host <arg>: specifies the target PAP hostname (default is
localhost). This option defines the PAP endpoint to be contacted as
follows:
https://arg:port/pap/services/ <https://arg:port/pap/services/>;

	--port <arg>: specifies the port on which the target PAP is
listening (default is 8150);

	--url <arg>: specifies the full target PAP endpoint (default:
https://localhost:8150/pap/services/);

	--cert <arg>: specifies non-standard user certificate;

	--key <arg>: specifies non-standard user private key;

	--password <arg>: specifies the password used to decrypt the
user’s private key;

	--proxy <arg>: specifies a user proxy to be used for
authentication;

By default, the pap-admin is configured to contact a PAP daemon on
localhost port 8150 (i.e., the standalone PAP daemon). If you want to
contact a PAP on another host use the --host option, a PAP listening
on a different port use the --port option. Alternatively the full
endpoint can be specified with the --url option.

NOTE: The Argus PDP caches the policy pulled from the PAP. If you
make policy changes to the PAP you will need to restart the PDP in order
to force it to refresh its policy. Also, the PEPd caches results from
the PDP for a short time (up to 10 minutes, by default) so you may need
to restart the PEPd as well.

Exit status

Each command returns 0 for success or non-zero in case of error.

X509 authentication

A valid X509 certificate or proxy certificate is needed in order to run the pap-admin client.
The certificate to be used by the command is found as follows:

	if the user is root then the client looks for host certificate at
the usual location, i.e. /etc/grid-security/hostcert.pem and
/etc/grid-security/hostkey.pem. These locations can be overridden by
setting the X509_USER_CERT and X509_USER_KEY environment
variables.

	if the user is not root, then the client looks for a
proxy certificate at the usual location, i.e.,
/tmp/x509up_u<uid>. The default proxy location can
be overridden using the X509_USER_PROXY environment variable. If no
proxy is found, then the client looks for a certificate (and the
relative private key) at the usual location, i.e.,
$HOME/.globus/usercert.pem and $HOME/.globus/userkey.pem. These
locations can be overridden by setting the X509_USER_CERT and
X509_USER_KEY environment variables.

This behaviour can be overridden by specifying the --cert, --key
and --proxy command line options.

Client configuration (since version 1.3.0)

The pap-admin.properties file, found in /etc/argus/pap (EMI) or
/opt/argus/pap/conf (gLite), allows to set the following properties:

	Property

	Description

	Default Value

	host

	The PAP host that will be contacted by the pap-admin CLI if no host is explicitly specified with the --host option

	localhost

	port

	The remote PAP service port number

	8150

This property file is especially useful when administering a PAP
installed on a remote machine.

Policy Management Commands

This set of commands allows to perform policy management operations. All
the commands in this section modifies the default PAP. In order to
target another local PAP use the option --pap <alias>.

Command: list-policies

List policies. By default the policies of the default PAP are listed
unless option --pap is specified.

usage: pap-admin [global-options] list-policies [options]

Command specific options:

	--pap <alias>: list policies of PAP “alias” (default PAP is
assumed if this option is missing);

	--all: list policies of all the defined PAPs;

	-srai,--show-ra-ids: show resource and action ids;

	-sai,--show-all-ids: show all ids (resource, action and rule
ids);

	--show-xacml: print policies using XACML.

Command: ban

Allows to ban an attribute (i.e. SUBJECT, FQAN, CA, etc.).

A deny rule is added for the given attribute into the specified
resource/action value. If the resource or the action values are not
specified then “.*” is assumed.

usage: pap-admin [global-options] ban [options] <id> <value>

	id: id of the attribute. The list of supported id depends on the
Argus version:

	Argus v. 1.0: dn, ca, vo, fqan, pfqan.

	Argus v. 1.1: subject, subject-issuer, vo, fqan, pfqan.

	value: value of the attribute - note: If you are using Argus
v. 1.0, the DN must be in RFC2253 format, which can be obtained from
openssl using the command
openssl x509 -in <cert.pem> -noout -subject -nameopt rfc2253

Command specific options:

	-a,--action <value>: specify an action value (default is “.*”)

	-r,--resource <value>: specify a resource value (default is
“.*”)

	--pap <alias>: add the policy to the PAP “alias” (default PAP
is assumed if this option is missing)

	--private: set the policy as private

	--public: set the policy as public

Semantic of the command: the resource and the action where the
deny rule is inserted are chosen as follows:

	if the first resource found in the repository matches the given one,
then that resource is used, otherwise a new one is created.

	if a matching resource was found, then if its first action matches
the given one then this action is used, otherwise a new action is
created (i.e. inside the new resource or inside the matched
resource).

	otherwise a new resource/action are created and inserted on the top.

Example:

pap-admin ban subject "CN=host.test.foo.it, L=FOO, OU=Host, O=ORGANIZATION, C=IT"

Command: un-ban

Allows to un-ban an attribute (i.e. SUBJECT, FQAN, CA, etc.), that means
removing a deny rule (if it exists in the given resource/action) for
the given attribute.

usage: pap-admin [global-options] un-ban [options] <id> <value>

	id: id of the attribute. The list of supported id depends on the
Argus version:

	Argus v. 1.0: dn, ca, vo, fqan, pfqan.

	Argus v. 1.1: subject, subject-issuer, vo, fqan, pfqan.

	value: value of the attribute - note: If you are using Argus
v. 1.0, the DN must be in RFC2253 format, which can be obtained from
openssl using the command
openssl x509 -in <cert.pem> -noout -subject -nameopt rfc2253

Command specific options:

	-a,--action <value>: specify an action value (default is “.*”)

	-r,--resource <value>: specify a resource value (default is
“.*”)

	--pap <alias>: remove the ban policy from the PAP alias (
default PAP is assumed if this option is missing)

Semantic of the command: the target resource and action to
search the deny rule for are chosen as follows:

	the target resource is the first matching resource in the
repository;

	inside the target resource the target action is the first
matching action ;

	if no target resource or action were found than the result is an
error message saying “ban policy not found”.

Example:

pap-admin un-ban subject "CN=host.test.foo.it, L=FOO, OU=Host, O=ORGANIZATION, C=IT"

Command: add-policy

Add a permit/deny policy.

usage: pap-admin [global-options] add-policy [options] <permit|deny> <id=value>...

	permit|deny: effect of the policy.

	id=value: a string in the form “<id>=<value>”, where id is any
of the attribute ids that can be specified in the simplified policy
language and value the value to be assigned (e.g. fqan=/vo/group).

Required command options: 1 --action-id <action-id> optionally with
--rule-id <rule-id>: allows to specify an action-id to insert the
policy into. 1 --resource <value> and --action <value>: allows
to specify a resource/action value to insert the policy into.

The two groups (1 and 2) of required options are mutually exclusive.

This command allows to add a (permit/deny) rule into an action by
specifying an action-id (in this case the action must already exist) or
a resource/action value. In the latter case a new resource and/or action
are created if they don’t already exist. The command returns an error if
there are more than one existing resource and/or action with the same
value. By default the rule is inserted at the top of an action unless
the --bottom option is given. If the --rule-id is set the rule
is inserted before the given rule-id or after if the --after option
is present.

Command specific options:

	--pap <alias>: add the policy to the PAP “alias” (default PAP
is assumed if this option is missing);

	--action-id <action-id>: specify an action id;

	--rule-id <rule-id>: specify a rule id (requires option
--action-id);

	--resource <value>: specify a resource value;

	--action <value>: specify an action value;

	--after: insert the rule after the given rule id;

	--bottom: insert the rule at the bottom of the list of rules of
the action.

	--obligation <obligationId>: specify an obligation. (since
version 1.2.0)

	--obligation-scope <scope>: Defines in which scope the
obligation will be defined. Possible values: action,
resource. If not specified, resource is used as default.
(since version 1.2.0)

Command: add-policies-from-file

Add policies (resources or actions) defined in the given file.

usage: pap-admin [global-options] add-policies-from-file [options] <file> [resourceId]

	file: text file containing the policies to add (policies defined
with the simplified policy language)

	resourceId: the resource to insert the policies into.

If resourceId is not specified then file must contain resource
elements that will be added, by default, at the bottom (unless option
--pivot is specified). Otherwise if resourceId is not specified
then file must contain action elements that will be added, by
default, at the bottom inside resourceId (unless option --pivot is
specified).

Command specific options:

	--pap <alias>: add the policies to the PAP “alias” (default
PAP is assumed if this option is missing);

	--pivot <id>: insert before <id>;

	--after: modifies the behavior of the --pivot option in
insert after <id>.

Command: update-policy-from-file

Update a resource/action with a new resource/action defined in a given
file.

usage: pap-admin [global-options] update-policy-from-file [options] <id> <file>

	id: id, as listed by the command pap-admin lp --show-all-ids
command, of the resource or action to be updated;

	file: text file containing the new policy definition (using the
simplified policy language syntax).

In order to modify an action the file must contain only the new
action, for example:

action ".*" {
 rule deny { subject="/DC=ch/DC=cern/OU=Organic Units/OU=Users/CN=user/CN=111111/CN=user name" }
}

Command specific options:

	--pap <alias>: update the policies for PAP “alias” (default
PAP is assumed if this option is missing);

Command: remove-policy

Remove policy by id.

usage: pap-admin [global-options] remove-policy [options] id...

	id: id, as listed by the command pap-admin lp --show-all-ids
command, of the policy (resource, action or rule) to remove;

Command specific options:

	--pap <alias>: remove policies of PAP “alias” (default PAP is
assumed if this option is missing);

Command: remove-all-policies

Remove all policies of a PAP. Use option --pap to specify a PAP
different than the default one.

usage: pap-admin [global-options] remove-all-policies [options]

Command specific options:

	--pap <alias>: remove the policies of PAP “alias” (default PAP
is assumed if this option is missing);

Command: move

Move a resource, action or rule before or after another, respectively,
resource, action or rule.

usage: pap-admin [global-options] move [options] <id> <pivotId>

	id: id, as listed by the command pap-admin lp --show-all-ids
command, of the policy (resource, action or rule) to move;

	pivotId: id of the pivot policy (id is moved before pivotId)

If id refers to a resource, action or rule then pivotId must be,
respectively, a resource, action or rule id.

Command specific options:

	--pap <alias>: move the policy of PAP “alias” (default PAP is
assumed if this option is missing);

	--after: move id after pivotId.

Command: add-obligation (since version 1.2.0)

Adds on obligation to an existing resource or action policy.

usage: pap-admin [global-options] add-obligation <policyId> <obligationId>

	policyId: the id of the policy where the obligation is to be
added. In order the get the policyId of existing policies, run the
list-policies command with the --show-all-ids option.

	obligationId: the id of the obligation that will be added.

Command specific options:

	--pap <alias>: add on policies defined in the PAP “alias” (
default PAP is assumed if this option is missing);

Command: remove-obligation (since version 1.2.0)

Removes an obligation from an existing resource or action policy.

usage: pap-admin [global-options] remove-obligation <policyId> <obligationId>

	policyId: the id of the policy where the obligation is to be
removed. In order the get the policyId of existing policies, run the
list-policies command with the --show-all-ids option.

	obligationId: the id of the obligation that will be removed.

Command specific options:

	--pap <alias>: add on policies defined in the PAP “alias” (
default PAP is assumed if this option is missing);

PAP Management Commands

This set of commands allows to perform management operations of the
PAPs.

Command: ping

Ping a PAP and return version information.

usage: pap-admin [global-options] ping

Command: add-pap

Add a remote or local PAP.

usage: pap-admin [global-options] add-pap [options] <alias> [<endpoint> <dn>]

	alias: a friendly (unique) name used to identify the PAP

	endpoint: endpoint of the remote PAP in the form:
[<protocol>://]<host>:[<port>/[path]]

	dn: DN of the remote PAP

A just added PAP is disabled by default (its policies are not sent to
the PDP), use the command enable-pap to enable it.

By default a PAP is considered to be private (use the --public
option to set the PAP as public). Policies defined in a public PAP can
be fetched from other remote PAPs, while this is not allowed when the
PAP is set to private.

If endpoint and dn are present the PAP is considered to be
remote (unless option --local is specified), otherwise it is local.
For the endpoint the only required parameter is the hostname, these are
the default values:

	protocol: https

	port: 8150

	service path: pap/services

When a new PAP is added, the PAP service tries immediately to fetch its
policies. If the remote PAP is not reachable, the pap-admin command
prints an error message clarifying that the PAP was successfully added,
but the fetching of the policies failed.

If the option --no-policies is given, the policies are not fetched
at PAP creation time but automatically by the server every
polling interval seconds or manually when the a refresh-cache
command is sent to the server.

Examples of endpoint are:

	test.site.com (hostname);

	test.site.com:9999 (hostname and port);

	test.site.com:9999/service_path (hostname, port, and service
path);

	https://test.site.com:9999/service_path (full URL).

Command specific options:

	-l,--local: set the PAP as local;

	--remote: set the PAP as remote;

	--private: set the PAP as private;

	--public: set the PAP as public;

	--no-policies: do not fetch the policies now.

Example:

pap-admin add-pap cnaf_pap test.cnaf.infn.it "/C=IT/O=INFN/OU=Host/L=CNAF/CN=test.cnaf.infn.it"

Command: update-pap

Update PAP information.

usage: pap-admin [global-options] update-pap [options] <alias> [<endpoint> <dn>]

The input is the same as for the “add-pap” command, the effect is to
update old information with the new one. The alias of a PAP cannot be
modified. In the case of a remote PAP the policies are fetched
immediately unless option --no-policies is given.

Command: remove-pap

Remove a PAP and delete its policies.

usage: pap-admin [global-options] remove-pap <alias>

	alias: alias of the PAP to remove

Command: list-paps

List all defined PAPs.

usage: pap-admin [global-options] list-paps [options]

Command specific options:

	-l: use a long list format (displays all the information of a
PAP).

Command: enable-pap

Set a PAP as enabled (i.e. PDPs will get its policies).

usage: pap-admin [global-options] enable-pap <alias>

Command: disable-pap

Set a PAP as disabled (i.e. PDPs won’t get its policies).

usage: pap-admin [global-options] disable-pap <alias>

Command: get-paps-order

Get PAPs ordering.

usage: pap-admin [global-options] get-paps-order

If no ordering is defined the output message is:
No ordering has been defined. If the default PAP is not listed in
the ordering (like in the no ordering defined case) by default it is
placed for first.

Command: set-paps-order

Define PAPs ordering.

usage: pap-admin [global-options] set-paps-order [alias]...

	alias: a valid PAP alias.

All the aliases must be valid (existing). If no arguments are given then
the current ordering (if there’s any defined) is deleted.

Example:

The remote PAP osct contains banning policies and we want that
policies to be evaluated for first. This is command to issue:

pap-admin set-paps-order osct default

If the PAP service contains other PAPs beyond the osct, then their
policies are evaluated after the osct and default PAP policies.
Since the ordering contains only the osct and the default PAPs it is
not guaranteed a special order for the evaluation of the policies of all
the other PAPs (except that they are evaluated after these two PAPs).

Command: refresh-cache

Invalidates the local policy cache and retrieves policies from remote
PAPs.

usage: pap-admin [global-options] refresh-cache [alias]...

	alias: a valid PAP alias.

The arguments identify the PAPs that will be contacted. If no arguments
are given, all the defined remote PAPs are contacted.

Command: get-polling-interval

Get the polling interval in seconds.

usage: pap-admin [global-options] get-polling-interval

Command: set-polling-interval

Invalidates the local policy cache and retrieves policies from remote
PAPs.

usage: pap-admin [global-options] set-polling-interval <seconds>

	seconds: polling interval in seconds.

Authorization Management Commands

This set of commands implement Access Control List (ACL) management for
PAP administrators.

Command: list-acl

The list-acl command provides an easy way of knowing the
authorization configuration of a running PAP.

Typing:

pap-admin list-acl

prints out the Access Control Entries (ACEs) comprising the ACL
currently defined for the running PAP.

Example:

~# pap-admin list-acl

/voms-ws/Role=PAP-Admin :
 POLICY_READ_LOCAL|POLICY_READ_REMOTE|POLICY_WRITE|CONFIGURATION_READ|CONFIGURATION_WRITE

"/C=IT/O=INFN/OU=Personal Certificate/L=CNAF/CN=Andrea Ceccanti" :
 POLICY_READ_LOCAL|POLICY_READ_REMOTE|POLICY_WRITE|CONFIGURATION_READ|CONFIGURATION_WRITE

ANYONE :
 CONFIGURATION_READ|CONFIGURATION_WRITE

Required permissions : CONFIGURATION_READ.

Command: add-ace

The add-ace command allows to add (or change) an ACE to the PAP ACL.
Note that if an ACE entry already exists on the server for the principal
specified in the command, the permissions in such ACE are replaced
by the ones specified in the command.

Usage:

pap-admin add-ace <principal> <permissions>

where:

	principal can be either an X509 DN or a VOMS FQAN. ANYONE can
be used to assign permissions to any authenticated user.

	permissions is a | separated list of PAP permissions that will
be assigned to principal. The ALL shortcut can be used to
assign all permission.

Example:

pap-admin add-ace '/atlas/Role=VO-Admin' 'ALL'

Required permissions: CONFIGURATION_READ|CONFIGURATION_WRITE

Command: remove-ace

The remove-ace command removes an ACE from the PAP ACL.

Usage:

pap-admin remove-ace <principal>

where:

	principal can be either an X509 DN or a VOMS FQAN. ANYONE can
be used to remove permissions assigned to any authenticated user.

Example:

pap-admin remove-ace '/atlas/Role=VO-Admin'

Required permissions: CONFIGURATION_READ|CONFIGURATION_WRITE

The Simplified Policy Language

As already explained here, Argus
policies contain collections of rules that state which actions can be
performed on which resources by which users. XACML, the language used
internally by Argus to define policies, provides great expressiveness
and flexibility but it’s very hard to read and author for human beings.
For this reason, Argus provides a Simplified Policy Language (SPL) to
hide the complexity of XACML while providing much of its flexibility.

As an example, the following policy denies access to all the resources
(under Argus control) to the members of the ATLAS VO:

resource ".*" {
 action ".*" {
 rule deny { vo = "atlas" }
 }
}

The SPL syntax

resource <value> {

 action <value> {

 rule <permit|deny> {

 <attributeId>=<attributeValue>
 ...
 }
 ...
 }
 ...
}
...

The SPL defines three stanza types: resource, action and
rule. It’s possible to define multiple resource stanzas that can
contain multiple action stanzas that can contain multiple rules stanzas.

The resource stanza is used to target a resource (or set of
resources, if wildcards are used) under the control of Argus
authorization.

The action stanza (always defined in the context of an enclosing
resource) is used to target an action (or set of actions, if
wildcards are used) that has to be authorized by Argus on the resource
identified by the enclosing resource stanza.

The rule stanza defines who is authorized (in case of a permit
rule) or not authorized (in case of a deny rule) to perform the
action on the resource identified by the enclosing action and resource
stanzas.

Identifying actions and resources

Actions and resources are identified by unique identifiers that are
assigned to them. This identifiers are usually URIs, but any string that
is unique in your deployment may work.

You can also use wildcards in your SPL policies to target group of
resources or actions, like in the following example:

resource "http://cnaf.infn.it/cream-ce-01" {

 action ".*" {

 rule permit { vo = "cms" }

 }
}

This policy authorizes users from the CMS vo to perform any action on
the resource http://cnaf.infn.it/cream-ce-01.

Identifying subjects

In Argus policies, the users (or software agents) that need to be
authorized to execute an action on a specific resource are identified
using a set of attributes, like:

	the subject of the user’s X509 certificate;

	the CA that issued the user’s x509 certificate;

	the VO the user belongs to;

	whether the use has a specific FQAN in its bag of VOMS attributes;

	whether the user has a specific FQAN as his primary FQAN.

The table below specifies the supported attributes for Argus 1.1:

	Attribute name

	Description

	Example

	subject

	The user’s X509 certificate subject in rfc2253 or openssl format

	subject ="CN=Andrea Ceccanti,L=CNAF,OU=Personal Certificate,O=INFN,C=IT"

	subject-issuer

	The subject (in rfc2254 or openssl format) of the CA that issued the user’s x509 certificate

	subject-issuer = "CN=INFN CA,O=INFN,C=IT"

	vo

	The name of the VO the user belongs to

	vo = "atlas"

	fqan

	The fqan present in the user’s bag of VOMS attributes

	fqan="/dteam/Role=VO-Admin"

	pfqan

	The user primary fqan

	pfqan="/atlas/Role=pilot"

The contents of the rule stanza

As already pointed out, the rule stanza defines who is authorized to
perform a specific action on a specific resource. A subject can be
identified using the attributes defined in the previous section.

resource "http://cnaf.infn.it/cream-ce-01" {

 action "submit-pilot-job" {

 rule permit { pfqan="/atlas/Role=pilot" }

 }
}

In the above policy, only subjects that have the /atlas/Role=pilot
fqan as their primary fqan are authorized (since the rule is permit
rule) to perform the action submit-pilot-job on the resource
http://cnaf.infn.it/cream-ce-01. To prevent users from LHCB VO the
execution of the same action, one would write the following policy:

resource "http://cnaf.infn.it/cream-ce-01" {

 action "submit-pilot-job" {

 rule deny { vo = "lhcb" }

 }
}

Multiple attributes inside the rule stanza

It is possible to define multiple attributes inside a rule stanza.
All the attributes defined in the rule stanza need to match with the
subject attributes present in the authorization request for the rule to
be applied. This can be explained more clearly using an example:

resource "http://cnaf.infn.it/cream-ce-01" {

 action "submit-job" {

 rule permit {
 vo = "cms"
 subject-issuer = "CN=INFN CA,O=INFN,C=IT"
 }
 }
}

The meaning of the above policy is that only members from the VO CMS
that have a certificate signed by the CN=INFN CA,O=INFN,C=IT CA will
be authorized to perform the action submit-job on resource
http://cnaf.infn.it/cream-ce-01. CMS members with certificates
signed by the CERN CA, for instance, will not be authorized.

Since all the attributes defined in a rule must be “matched” in the
request for the rule to be applied, one can think about multiple
attributes inside a rule stanza as conditions that are ANDed to select
who will be authorized to perform the action the rule is about.

How policies are evaluated

The first applicable policy (and only that one) that matches the
authorization request is the one that is applied by Argus. This means
that order matters. An example will help in understanding this
concept.

Suppose we want to grant access to our CE to all members of VO CMS but
not those that have /cms/Role=pilot as their primary FQAN. We would
write a policy like this:

resource "http://cnaf.infn.it/cream-ce-01" {

 action ".*" {

 rule deny{ pfqan = "/cms/Role=pilot"}
 rule permit { vo = "cms" }

 }
}

Since the deny rule precedes the permit rule in the above policy, we are
able to deny access only to CMS users with the pilot role, but grant
access to other members of CMS. This is due to the fact that the first
deny rule will not match to CMS users that do not have the pilot role,
so the following permit rule will be applied. On the contrary, if we
reversed the order of the two rules like in the following policy:

resource "http://cnaf.infn.it/cream-ce-01" {

 action ".*" {

 rule permit { vo = "cms" }
 rule deny{ pfqan = "/cms/Role=pilot" }
 }
}

the deny rule would be useless, since the permit rule that precedes it
would always match any CMS member.

The obligation stanza

Starting with Argus version 1.1, the SPL supports obligation
stanzas. The syntax of the obligation stanza is as follows:

obligation "obligationId" {
 [attributeId = attributeValue]*
}

Obligation stanzas can be placed either in the resource or action context
and are used to define a set operations that must be performed by the
Argus PEP in conjunction with an authorization decision. An obligation
stanza can define 0..N attribute definitions, that are passed as
parameters to the PEP for the fulfillment of the obligation.

An example of policy with an obligation is the following:

resource "http://cnaf.infn.it/wn"{

 obligation "http://glite.org/xacml/obligation/local-environment-map" {}

 action "http://glite.org/xacml/action/execute"{
 rule permit { vo = "dteam" }
 }
}

The Argus PEP currently supports only the map-to-local-environment
obligation.

The map-to-local-environment obligation

The map-to-local-environment obligation, identified by the following
id:

http://glite.org/xacml/obligation/local-environment-map

is used within a policy to signify that a mapping to a local Posix
account will be produced by the Argus server as a result of a permit
policy.

The use of this obligation is mandatory for the policies that
authorize the execution and mapping of pilot jobs on the worker node.

Examples

Ban policies

Ban policies are used to deny a subject on all possible resources. For
this reason ban policies need to be placed at the top and defined for
any action on all the resources.

resource ".*" {
 action ".*" {
 rule deny { subject = "CN=Alberto Forti,L=CNAF,OU=Personal Certificate,O=INFN,C=IT" }
 rule deny { fqan = /dteam/test }
 }
}

Glexec on the WN policies

Policy that authorize execution and mapping of pilot jobs on the WN need
to specify the map-to-local-environment obligation to produce a
mapping that gLexec can use to do the user switch. An example of such
policy is the following:

resource "http://cnaf.infn.it/wn"{

 obligation "http://glite.org/xacml/obligation/local-environment-map" {}

 action "http://glite.org/xacml/action/execute"{
 rule permit { vo = "dteam" }
 rule permit { pfqan = "/atlas/Role=pilot" }
 rule permit { pfqan = "/ops/Role=pilot" }
 }
}

The above policy authorizes the execution of jobs on the WN by:

	people from the dteam VO,

	people that have /atlas/Role=pilot as the primary fqan

	people that have /ops/Role=pilot as the primary fqan

Argus: Policy Administration Point (PAP): Known Issues

There is no known issues.

Argus: Policy Decision Point (PDP)

The Policy Decision Point (PDP) is a policy evaluation engine.

The PDP receives authorization requests from Policy Enforcement Points
and evaluates these requests against authorization policies retrieved
from the PAP.

Summary

	Argus Policy Decision Point (PDP) Installation

	Argus Policy Decision Point (PDP): Configuration
	Configuration Files

	Configuration File Syntax

	Basic Configuration Options

	Advanced Configuration Options

	Environment file

	Argus Policy Decision Point (PDP): Operation
	Service Operation Commands

	Service Information

	Logging and Logs

	Argus: Policy Decision Point (PDP): Troubleshooting
	PDP Uses “Old” Policies

	Private Key File Access

Argus Policy Decision Point (PDP) Installation

To deploy the Argus PDP service, please follow the documentation
Argus Deployment.

Argus Policy Decision Point (PDP): Configuration

Configuration Files

The PDP is configured through the use of the pdp.ini file,
located in /etc/argus/pdp directory.

There is also an environment file,
located in /etc/sysconfig/argus-pdp,
that contains environment variables used by the init script that manage the
service.

Configuration File Syntax

The pdp.ini file is a standard INI file with three defined sections.
The SERVICE section contains properties related the PDP service as a
whole and how it listens for incoming requests. The POLICY section
contains properties for the retrieval of policies from the Policy
Administration Point (PAP). The final section, SECURITY, contains
properties that related to various security aspects of the service, the
services private key and certificate, for example.

Basic Configuration Options

SERVICE section

	Property

	Description

	Required?

	Default Value

	entityID

	This is a unique identifier for the PDP. It must be a URI (URL or URN) and the same entity ID should be used for all PDP instances that make up a single logical PDP. If a URL is used it need not resolve to any specific webpage.

	Y

	None. Recommended value is a URL corresponding to the logical PDP service (e.g. http://pdp.example.org).

	hostname

	This is the hostname or IP address to which the service will bind.

	Y

	None.

	port

	This is the port to which the service will bind.

	N

	8152

	adminHost

	The hostname upon which the service will listen for admin commands.

	N

	127.0.0.1

	adminPort

	This is the port upon which the service will listen for admin command.

	N

	8153

	adminPassword

	This is the password required to accompany admin commands. If unspecified than no password is required to run admin commands.

	N

	None

POLICY section

	Property

	Description

	Required?

	Default Value

	paps

	A space separated list of PAP endpoint URLs. Endpoints will be tried in turn until one returns a successful response. This provides limited failover support. If more intelligent failover is necessary or load balancing is required, a dedicated load-balancer/failover appliance should be used.

	Y

	None

	retentionInterval

	The number of minutes the PDP will retain (cache) a policy retrieved from the PAP. After this time is passed the PDP will again call out to the PAP and retrieve the policy.

	N

	240 (4 hours)

SECURITY section

	Property

	Description

	Required

	Default Value

	servicePrivateKey

	An absolute path to the file containing the
unencrypted, PEM-encoded, private key used by this service. All PDPs
instances within a single logical PDP should use the same key

	Yes

	None

	serviceCertificate

	An absolute path to the file containing the unencrypted, PEM-encoded, certificate used by this
service. All PDPs instances within a single logical PDP should use the same key

	Yes

	None

	trustInfoDir

	An absolute path to the directory that contains standard X.509 trust information, such as the
IGTF Trust Anchor Distribution

	Yes

	None

	enableSSL

	Indicates whether the service port should use SSL/TLS or not

	No

	false

	tlsProtocol

	Which TLS protocol should be used whent HTTPS is enabled. Available values: TLS (default), TLSv1.2, TLSv1.1.

	No

	TLS

	enabledProtocols

	Specifies the TLS protocol versions to be enabled for use on the connection. The standard names that can be passed are, for example: TLSv1.2, TLSv1.1 and TLSv1.

	No

	None

	requireClientCertAuthentication

	Indicates whether the client must use a valid client certificate to authenticate to the PDP

	No

	false

Example pdp.ini files

The following example file contain the bare minimum required for a valid
PDP configuration file.

[SERVER]
entityID = http://argus.example.org/pdp
hostname = argus.example.org

[POLICY]
paps = https://argus.example.org:8150/pap/services/ProvisioningService

[SECURITY]
servicePrivateKey = /etc/grid-security/hostkey.pem
serviceCertificate = /etc/grid-security/hostcert.pem
trustInfoDir = /etc/grid-security/certificates
HTTPS enabled
enableSSL = true
tlsProtocol = TLS

Advanced Configuration Options

The following advanced options are available but are unlikely to ever be
used by deployers. They are mostly for performing very fine-grained
tuning of request/response handling parameters. Incorrectly configuring
these can have a very negative impact on performance so deployers should
not change these unless they are very sure they understand what the
impact will be.

SERVICE section

	Property

	Description

	Required?

	Default Value

	maximumRequests

	The maximum number of requests that will be processed simultaneously. Additional requests will be queued.

	N

	200

	requestQueueSize

	The maximum number of requests that will be queued up when all the processing threads are busy. Incoming requests received when all processing threads are busy and the queue is full will receive an HTTP 503 error.

	N

	500

	connectionTimeout

	This is the length of time, in seconds, the service will wait for the client to send information before it considers the request timed out.

	N

	30 seconds

	receiveBufferSize

	This is the size, in bytes, that will be allocated to the HTTP request buffer.

	N

	16384 (16kb)

	sendBufferSize

	This is the size, in bytes, that will be allocated to the HTTP response buffer.

	N

	16384 (16kb)

POLICY section

	Property

	Description

	Required

	Default Value

	policySetId

	The ID of the policy to fetch from the PAP

	No

	-1

	connectionTimeout

	This is the length of time, in seconds, the PAP client will wait for the PAP to send information before it
considers the request timed out

	None

	30

	receiveBufferSize

	This is the size, in bytes, that will be allocated to the PAP client send buffer

	No

	16384 (16KB)

	sendBufferSize

	This is the size, in bytes, that will be allocated to the PAP client request buffer

	No

	16384 (16KB)

SECURITY section

	Property

	Description

	Required?

	Default Value

	trustInfoRefresh

	The frequency, in minutes, that the trust material specified by trustInfoDir will be checked for updates.

	N

	60 (1 hour)

	messageValidityPeriod

	The number of seconds, from the time a message is issued, until it is considered expired.

	N

	300s (5 minutes)

	clockSkew

	The allowance, in seconds, used when computing validity periods.

	N

	30s

	enableSSL

	Enable HTTPS on the service port (SSL/TLS). The serviceCertificate, servicePrivateKey, and trustInfoDir properties must also be defined in order to use this setting.

	N

	false

	tlsProtocol

	Which TLS protocol should be used whent HTTPS is enabled. Available values: TLS (default), TLSv1.2, TLSv1.1.

	N

	TLS

	enabledProtocols

	Specifies the TLS protocol versions to be enabled for use on the connection. The standard names that can be passed are, for example: TLSv1.2, TLSv1.1 and TLSv1

	N

	None

Environment file

In the /etc/sysconfig/argus-pdp file are defined Argus PDP environment variables,
described in the table below.

	Variable

	Default value

	Meaning

	JAVACMD

	/usr/bin/java

	Absolute path of the JVM executable.

	PDP_JOPTS

	-Xmx256M -Djdk.tls.trustNameService=true

	Optional parameters to pass to the JVM when PDP is started/stopped

	PDP_START_JOPTS

	empty

	Optional parameters to pass to the JVM only when PDP is started; useful to enable JMX or remote debug

	PDP_HOME

	/usr/share/argus/pdp

	Absolute path of PDP installation directory

	PDP_CONF

	/etc/argus/pdp/pdp.ini

	Absolute path of PDP configuration file.

	PDP_CONFDIR

	/etc/argus/pdp

	Absolute path of PDP configuration directory.

	PDP_LOGDIR

	/var/log/argus/pdp

	Absolute path of PDP logs directory.

	PDP_LIBDIR

	/var/lib/argus/pdp/lib

	Absolute path of PDP libraries.

	PDP_ENDORSEDDIR

	/var/lib/argus/pdp/lib/endorsed

	Absolute path of PDP endorsed libraries.

	PDP_PROVIDEDDIR

	/var/lib/argus/pdp/lib/provided

	Absolute path of PDP provided libraries.

	PDP_PID

	/var/run/argus-pdp.pid

	Absolute path of PDP PID file.

Attention

The option -Djdk.tls.trustNameService=true is mandatory in Argus version 1.7 with TLS turned on.

This system property enforce the host name check to avoid JDK bug https://bugs.openjdk.java.net/browse/JDK-8133196.

 Argus Policy Decision Point (PDP): Operation

Argus Policy Decision Point (PDP): Operation

Service Operation Commands

	Start the PDP service

	

	Platform

	Command

	EL6

	service argus-pdp start

	EL7

	systemctl start argus-pdp

	Stop the PDP service

	

	Platform

	Command

	EL6

	service argus-pdp stop

	EL7

	systemctl stop argus-pdp

	Restart the PDP service

	

	Platform

	Command

	EL6

	service argus-pdp restart

	EL7

	systemctl restart argus-pdp

	PDP service status information

	

	Platform

	Command

	EL6

	service argus-pdp status

	EL7

	systemctl status argus-pdp

	Reload PDP policies

	Causes the currently cached copy of the policies received from the
PAP can be flushed from memory, and retrieved a new from the PAP.

	Platform

	Command

	EL6

	pdpctl reloadPolicy

	EL7

	pdpctl reloadPolicy

Service Information

Service Ports

	Default Service Port: 8152

	Default Admin Port: 8153

The PDP service only requires the standard service port to be open to
those PEPd services which will communicate with the PDP. The PDP must
also be able to make outbound connections to those PAPs from which
remote policies will be retrieved.

Service Endpoint URLs

This service contains the following endpoint URLs:

	https://HOSTNAME:8152/authz

	This endpoint is the recipient of authorization requests.

	http://127.0.0.1:8153/status

	This endpoint provides current status information on the PDP.
This endpoint is password protected.

	http://127.0.0.1:8153/reloadPolicy

	This endpoint instructs the PDP to flush,
and retrieve anew, its policy from the PAP.
This endpoint is password protected.

	http://127.0.0.1:8153/shutdown

	This endpoint instructs the PDP to shutdown.
This endpoint is password protected.

Note

Admin services may be password protected and thus not
invokable without this password.

 Argus: Policy Decision Point (PDP): Troubleshooting

Argus: Policy Decision Point (PDP): Troubleshooting

PDP Uses “Old” Policies

The PDP caches policies received from the PAP in order to avoid the cost
of fetching and parsing them for every request. In cases where you know,
or suspect, the policy used by the PDP is no longer in synch with the
policy stored at the PAP you may use the command

pdpctl reloadPolicy

to force the PDP to flush its policy cache and retrieve the latest
policy from the PAP.

Private Key File Access

Many systems protect their private keys so that only super-user accounts
can read them. Starting, and running the PDP, as such an account is
strongly discouraged. The recommend approach is to create a special
group (e.g. ‘hostkey’) that has read permissions to the key and ensure
the user running the PDP service is also in this group. This group
should not have write permission to the key.

Some people might view this as a loss of security, because, if the
service user account were compromised the attacker would be able to read
the private key. However, the service holds a copy of key in memory once
it starts and this copy can easily be accessed via tools that come with
the JRE.

 Argus: Policy Enforcement Point Daemon (PEP)

Argus: Policy Enforcement Point Daemon (PEP)

In the Argus authorization framework the Policy Enforcement Point is
implemented as a client-server architecture. The PEP Daemon is the
server component and there are different lightweight PEP clients
available: C client, Java client, and GSI PEP Callout client.

Summary

	Argus PEP Server Installation
	Installation

	Argus PEP Server: Configuration
	Configuration Files

	Configuration File Syntax

	Basic Configuration Options

	Advanced Configuration Options

	Environment file

	Argus PEP Server: Operation
	Service Operation Commands

	Service Information

	Logging and Logs

	Argus PEP Server: Troubleshooting
	PEP Daemon Returns “Stale” Results

	Testing a policy without submitting a job

	Argus PEP Server Policy Information Points (PIP)
	Request Validator PIP

	OpenSSL Subject Converter PIP

	Grid Authorization Profile PIP

	Common XACML Authorization Profile PIP

	Authentication Profile PIP

	Other Policy Information Points

	Argus PEP Clients
	pepcli

	PEP Java Client Command Line

	Argus PEP Client Library: C API
	Documentation

	PEP XACML Object Model

	Basic Example

	Complex Example

	Multi-threaded Programming

	Processing Authorization Decision

	Argus PEP Client: Java Programming Interface
	Javadoc

	PEP XACML Object Model

	Basic Example

	Processing Authorization Decision

	GUI

	Argus GSI PEP Callout
	Module Description

	Argus GSI PEP Callout: Installation

	Manual Installation
	Configuration

	Troubleshooting

	Argus PEP Server Obligation Handlers
	Grid Map POSIX Account Mapping Obligation Handler

 Argus PEP Server Installation

Argus PEP Server Installation

Installation

To deploy the Argus PEP Server, please follow the documentation
Argus Deployment

 Argus PEP Server: Configuration

Argus PEP Server: Configuration

Configuration Files

The PEPd is configured through the use of the pepd.ini file,
located in /etc/argus/pepd directory.

There is also an environment file,
located in /etc/sysconfig/argus-pepd,
that contains environment variables used by the init script that manage the
service.

Configuration File Syntax

The pepd.ini file is a standard INI file with different defined
sections. The SERVICE section contains properties related the PEP
Server service as a whole and how it listens for incoming requests. The
PDP section that control how callouts to the PDP are made. The final
section, SECURITY, contains properties that related to various
security aspects of the service, the services private key and
certificate, for example.

PIP Configuration

Each Policy Information Point (PIP) is configured in its own INI
section, referenced in the SERVICE section under the pips
property.

The configuration properties needed by each PIP is specific to that
given PIP. Some will not require any properties beyond the standard set
while other will need addition information.

	See the Policy Information Point documentation for
more information:

	Request Validator PIP

	OpenSSL Subject Converter PIP

	gLite Grid Authorization Profile PIP

	Common XACML Authorization Profile PIP

Obligation Handler Configuration

Each Obligation Handler (OH) is configured in its own INI section,
referenced in the SERVICE section under the obligationHandlers
property.

The configuration properties needed by each Obligation Handler is
specific to that given OH. Some will not require any properties beyond
the standard set while other will need addition information.

See the Obligation Handler documentation for more
information, in particular the Gridmap Account Mapping Obligation Handler.

Basic Configuration Options

SERVICE section

	Property

	Description

	Required?

	Default Value

	entityID

	This is a unique identifier for the PEP. It must be a URI (URL or URN) and the same entity ID should be used for all PEP instances that make up a single logical PEP. If a URL is used it need not resolve to any specific webpage.

	Y

	None. Recommended value is a URL corresponding to the logical PEP service (e.g. http://pep.example.org).

	hostname

	This is the hostname or IP address to which the service will bind.

	Y

	None

	port

	This is the port to which the service will bind.

	N

	8154

	adminHost

	The hostname upon which the service will listen for admin commands.

	N

	127.0.0.1

	adminPort

	This is the port upon which the service will listen for admin commands. This port is only available on the localhost (127.0.0.1).

	N

	8155

	adminPassword

	This is the password required to accompany admin commands. If unspecified than no password is required to run admin commands.

	N

	None

	pips

	This is a space separated list of the INI section names that configure policy information points (PIP) that the PEP will invoke upon the arrival of every request. PIPs are executed in the order listed by this property. See the policy information point documentation for more information.

	N

	None

	obligationHandlers

	This is a space separated list of the INI section names that configure obligations handlers that the PEP will use to fulfill obligation requirements sent back by the PDP. See the obligation handler documentation for more information.

	N

	None

PDP section

	Property

	Description

	Required?

	Default Value

	pdps

	A space separated list of PDP endpoint URLs. Endpoints will be tried in turn until one returns a successful response. This provides limited failover support. If more intelligent failover is necessary or load balancing is required, a dedicated load-balancer/failover appliance should be used.

	Y

	None

	maximumCachedResponses

	The maximum number of responses from any PDP that will be cached. Setting this value to 0 (zero) will disable caching. The maximum amount of time a single response is cached is controlled by the cachedResponseTTL property described below.

	N

	500

SECURITY section

	Property

	Description

	Required?

	Default Value

	servicePrivateKey

	An absolute path to the file containing the unencrypted, PEM-encoded, private key used by this service.

	Yes, if requests from the PEP client should be done over HTTPS.

	None.

	serviceCertificate

	An absolute path to the file containing the unencrypted, PEM-encoded, certificate used by this service.

	Yes, if requests from the PEP client should be done over HTTPS.

	None.

	trustInfoDir

	An absolute path to the directory that contains standard X.509 trust information, such as the IGTF Trust Anchor Distribution.

	Required when connecting to PDPs over HTTPS.

	None

	enableSSL

	Enable HTTPS on the service port (SSL/TLS). The serviceCertificate, servicePrivateKey, and trustInfoDir properties must also be defined in order to use this setting.

	N

	false

	tlsProtocol

	Which TLS protocol should be used whent HTTPS is enabled. Available values: TLS (default), TLSv1.2, TLSv1.1.

	N

	TLS

	enabledProtocols

	Specifies the TLS protocol versions to be enabled for use on the connection. The standard names that can be passed are, for example: TLSv1.2, TLSv1.1 and TLSv1

	N

	None

	requireClientCertAuthentication

	The client must have a valid X.509 client certificate to authenticate to the PEP Server

	N

	true

Example pepd.ini files

The following example file contain the bare minimum required for a valid
PEP configuration file.

[SERVICE]
entityId = https://argus.example.org/pep
hostname = argus.example.org

[PDP]
pdps = https://argus.example.org:8152/authz

[SECURITY]

The following example file contains the bare minimum required for a
valid PEP configuration plus the configuration of a couple PIPs. Note
how each element in the list pips list of the SERVER section
matches the name section configuring the PIP. Also note that the
REQVALIDATOR_PIP takes a few additional configuration parameters.

[SERVICE]
entityID = http://argus.example.org/pep
hostname = argus.example.org
pips = REQVALIDATOR_PIP

[PDP]
pdps = https://argus.example.org:8152/authz https://pdp2.example.org:8152/authz

[SECURITY]
servicePrivateKey = /etc/grid-security/hostkey.pem
serviceCertificate = /etc/grid-security/hostcert.pem
trustInfoDir = /etc/grid-security/certificates
enableSSL = true
tlsProtocol = TLS
requireClientCertAuthentication = true

[REQVALIDATOR_PIP]
parserClass = org.glite.authz.pep.pip.provider.RequestValidatorPIPIniConfigurationParser
validateRequestSubjects = true
validateRequestResources = true
validateRequestAction = true
validateRequestEnvironment = false

Advanced Configuration Options

The following advanced options are available but are unlikely to ever be
used by deployers. They are mostly for performing very fine-grained
tuning of request/response handling parameters. Incorrectly configuring
these can have a very negative impact on performance so deployers should
not change these unless they are very sure they understand what the
impact will be.

SERVICE section

	Property

	Description

	Required?

	Default Value

	maximumRequests

	The maximum number of requests that will be processed simultaneously. Additional requests will be queued.

	N

	200

	requestQueueSize

	The maximum number of requests that will be queued up when all the processing threads are busy. Incoming requests received when all processing threads are busy and the queue is full will receive an HTTP 503 error.

	N

	500

	connectionTimeout

	This is the length of time, in seconds, the service will wait for the client to send information before it considers the request timed out.

	N

	30 seconds

	receiveBufferSize

	This is the size, in bytes, that will be allocated to the HTTP request buffer.

	N

	16384 (16kb)

	sendBufferSize

	This is the size, in bytes, that will be allocated to the HTTP response buffer.

	N

	16384 (16kb)

PDP section

	Property

	Description

	Required

	Default Value

	maximumRequests

	The maximum number of simultaneous requests that will be made to the PDP. Additional requests will wait until a free request slot becomes available

	No

	200

	cachedResponseTTL

	The length of time, in seconds, for which a response will be cached

	No

	600 (10 minutes)

	connectionTimeout

	This is the length of time, in seconds, the PDP client will wait for the PDP to send information before it considers the request timed out

	No

	30

	receiveBufferSize

	This is the size, in bytes, that will be allocated to the PDP client send buffer

	None

	16384 (16 KB)

	sendBufferSize

	This is the size, in bytes, that will be allocated to the PDP client request buffer

	None

	16384 (16 KB)}

SECURITY section

	Property

	Description

	Required?

	Default Value

	trustInfoRefresh

	The frequency, in minutes, that the trust material specified by trustInfoDir will be checked for updates.

	N

	60 (1 hour)

Environment file

In the /etc/sysconfig/argus-pepd file are defined Argus PEPd environment variables,
described in the table below.

	Variable

	Default value

	Description

	JAVACMD

	/usr/bin/java

	Absolute path of the JVM executable.

	PEPD_JOPTS

	-Xmx256M -Djdk.tls.trustNameService=true

	Optional parameters to pass to the JVM when PEPd is started/stopped

	PEPD_START_JOPTS

	empty

	Optional parameters to pass to the JVM only when PEPd is started; useful to enable JMX or remote debug

	PEPD_HOME

	/usr/share/argus/pepd

	Absolute path of PEPd installation directory

	PEPD_CONF

	/etc/argus/pepd/pepd.ini

	Absolute path of PEPd configuration file.

	PEPD_CONFDIR

	/etc/argus/pepd

	Absolute path of PEPd configuration directory.

	PEPD_LOGDIR

	/var/log/argus/pepd

	Absolute path of PEPd logs directory.

	PEPD_LIBDIR

	/var/lib/argus/pepd/lib

	Absolute path of PEPd libraries.

	PEPD_ENDORSEDDIR

	/var/lib/argus/pepd/lib/endorsed

	Absolute path of PEPd endorsed libraries.

	PEPD_PROVIDEDDIR

	/var/lib/argus/pepd/lib/provided

	Absolute path of PEPd provided libraries.

	PEPD_PID

	/var/run/argus-pepd.pid

	Absolute path of PEPd PID file.

Attention

The option -Djdk.tls.trustNameService=true is mandatory in Argus version 1.7 with TLS turned on.

This system property enforce the host name check to avoid JDK bug https://bugs.openjdk.java.net/browse/JDK-8133196

 Argus PEP Server: Operation

Argus PEP Server: Operation

For more Argus details, see the Argus Service Reference Card.

Service Operation Commands

	Start the PEP service

	

	Platform

	Command

	EL6

	service argus-pepd start

	EL7

	systemctl start argus-pepd

	Stop the PEP service

	

	Platform

	Command

	EL6

	service argus-pepd stop

	EL7

	systemctl stop argus-pepd

	Restart the PEP service

	

	Platform

	Command

	EL6

	service argus-pepd restart

	EL7

	systemctl restart argus-pepd

	PEP service status information

	

	Platform

	Command

	EL6

	service argus-pepd status

	EL7

	systemctl status argus-pepd

	Clear PEP service response cache

	Causes the currently cached responses from the PDP can be flushed from memory

	Platform

	Command

	EL6

	pepdctl clearResponseCache

	EL7

	pepdctl clearResponseCache

Service Information

Service Ports

	Default Service Port: 8154

	Default Admin Port: 8155

The PEP service only requires the standard service port to be open to
those PEP clients which will communicate with the PEP. The PEP must also
be able to make outbound connections to those PDPs to which is will make
policy decision requests.

Service Endpoints

This service contains the following endpoint URLs:

	https://argus.example.org:8154/authz

	This endpoint is the recipient of authorization requests and is reachable on the standard
service host and port.

	http://127.0.0.1:8155/status

	This endpoint provides current status information on the PEP daemon and is reachable on the standard
admin host and port.

	http://127.0.0.1:8155/clearResponseCache

	This endpoint instructs the PEP daemon to flush its PDP response cache. It is
reachable on the standard admin host and port.

	http://127.0.0.1:8155/shutdown

	This endpoint instructs the PEP
daemon to shutdown and is reachable on the standard admin host and
port.

Note

Admin services may be password protected and thus not
invokable without this password.

 Argus PEP Server: Troubleshooting

Argus PEP Server: Troubleshooting

PEP Daemon Returns “Stale” Results

The PEPd keeps a short (10 minutes by default) response cache. So
identical requests made within a short time period will always provide
the same answer. If you’re testing this can be a pain. You can clear the
cache using the pepdctl clearResponseCache command. You can also
turn of the cache through the maximumCachedResponses documented in
the PEPd configuration. Just be sure to enable it
again before you put the system under heavy load.

Note that the PDP also caches the policies it reads, so during testing
you may also want to configure the PDP to more
quickly pick up policies from the PAP via the retentionInterval
option.

Testing a policy without submitting a job

When authoring new policies or troubleshooting an existing policies it
can be helpful to mock up requests, instead of getting users to perform
the request over and over as you diagnose the problem. The PEPd offers a
C and Java command line tool. The C tool is useful
for specifically testing cases where policies are based on the resource
ID, action ID, subject ID, and FQAN attributes. The
Java tool allows you to mock up any request.

Here is an example of using the C command line tool to test a job
submission. It specifies the PEPd service, resource ID, action ID,
user’s DN, and primary FQAN.

/opt/glite/bin/pepcli -v -x \
 -p http://vesta.switch.ch:8154/authz \
 -r http://authz-interop.org/xacml/resource/resource-type/wn \
 -a http://authz-interop.org/xacml/action/action-type/execute-now \
 -s "CN=Alessandro Usai,O=SWITCH,C=CH,DC=users,DC=switch,DC=grid,DC=quovadisglobal,DC=com" \
 -f /dech \

 Argus PEP Server Policy Information Points (PIP)

Argus PEP Server Policy Information Points (PIP)

Policy Information Points (PIPs) are plugins to the authorization
service that help populate and/or complete an authorization request.
PIPs may rely on information already within the request or they may
simply be able to self generate the data that they will add.

The following PIPs are currently available:

	Request Validator PIP

	OpenSSL Subject Converter PIP

	Grid Authorization Profile PIP

	Common XACML Authorization Profile PIP

	Authentication Profile PIP

Other Policy Information Points

Here are other PIPs that you can configure for testing or debugging
purpose:

	Attribute White List PIP

	Environment Time PIP

	Static Attributes PIP

 Request Validator PIP

Request Validator PIP

Warning

This PIP is new in Argus 1.3 (EMI).

 OpenSSL Subject Converter PIP

OpenSSL Subject Converter PIP

Warning

This PIP is new in Argus 1.3 (EMI).

 Grid Authorization Profile PIP

Grid Authorization Profile PIP

Warning

This is the default profile supported starting from Argus 1.2.

 Common XACML Authorization Profile PIP

Common XACML Authorization Profile PIP

Warning

This profile is supported since Argus 1.6 (EMI-3).

 Authentication Profile PIP

Authentication Profile PIP

Warning

This PIP has been introduced in Argus 1.7.1

 Attribute White List PIP

Attribute White List PIP

This PIP can be used to filter out attributes that should not be
accepted within a request.

Configuration

	Create a new INI section for you PIP (you may
choose any valid INI section name. e.g. WHITELIST_PIP)

	Into the PIP INI section add the parserClass property with the
value
org.glite.authz.pep.pip.provider.AttributeWhitelistPIPIniConfigurationParser

	Configure which request attributes are to be accepted

PIP Configuration Properties

	Property

	Description

	Required?

	Default Value

	acceptedActionAttributes

	spaced delimited list attribute IDs that may appear in the request action

	N

	None.

	acceptedEnvrionmentAttributes

	spaced delimited list attribute IDs that may appear in the request environment

	N

	None.

	acceptedResourceAttributes

	spaced delimited list attribute IDs that may appear in the request resource

	N

	None.

	acceptedSubjectAttributes

	spaced delimited list attribute IDs that may appear in the request subject

	N

	None.

Note

If a property is not given then all attributes within the
section (i.e. action, environment, resource, or subject) are accepted.

 Environment Time PIP

Environment Time PIP

This PIP populates a few time-related attributes within the
environment portion of the request.

Tip

Using this PIP effective disables the response caching in a
PEP Server as will make every request different.

 Static Attributes PIP

Static Attributes PIP

This PIP can populate the action, environment, resource, and subject of
the request with a static set of attributes.

This PIP is very useful for testing as it allows for the creation of any
arbitrary request.

Configuration

	Create a new INI section for you PIP (you may
choose any valid INI section name)

	To PIP INI section add the parserClass property with the value
org.glite.authz.pep.pip.provider.StaticPIPIniConfigurationParser

	Define the property staticAttributesFile with a fully qualified
path to a file that will hold the definitions for the static
attributes

	If populating action attributes, define the property
actionAttributes with a space delimited list of the INI sections,
defined in the staticAttributesFile file, that represent the
attributes that should be treated as action attributes.

	If populating environment attributes, define the property
environmentAttributes with a space delimited list of the INI
sections, defined in the staticAttributesFile file, that
represent the attributes that should be treated as environment
attributes.

	If populating resource attributes, define the property
resourceAttributes with a space delimited list of the INI
sections, defined in the staticAttributesFile file, that
represent the attributes that should be treated as resource
attributes.

	If populating subject attributes, define the property
subjectAttributes with a space delimited list of the INI
sections, defined in the staticAttributesFile file, that
represent the attributes that should be treated as subject
attributes.

	If the defined subject attributes should be added to each subject in
the request, define the property
includeSubjectAttribtuesInAllSubjects with a value of “true”

	Optionally define the property defaultAttributeIssuer to a value
that will be used as the attribute issuer if the attribute definition
does not define an issuer.

	Add the name of the created PIP INI section to the list of PIPs in
the SERVICE section

To define your static attribute files, repeat the following steps for
each static attribute you wish to define:

	Create a new INI section for you PIP (you may
choose any valid INI section name)

	Define the property id with the value of the ID of the attribute

	Optionally define the property datatype with the datatype of the
attribute. If no datatype is define the default data type will be
http://www.w3.org/2001/XMLSchema#string

	Optionally define the property issuer with the ID of the issuer
for the attribute.

	Define the property values with a delimited string representing
the values of the attribute. See next step for the delimiter.

	Optionally define the property valueDelimiter with a delimiter
string used to separate values in the previous property. If no
delimiter is defined the default delimiter is ‘,’ (comma).

Prerequisite

None.

Populate Attributes

This PIP will populate those attributes defined in the
staticAttributesFile file and referenced by either the
actionAttributes , environmentAttributes ,
resourceAttributes , or subjectAttributes properties.

Example Configuration

The following example shows a PEP Server configuration with the Static
Attributes PIP enabled:

[SERVICE]
entityId = https://example.org/pep
hostname = example.org
pips = STATIC

[PDP]
pdps = http://localhost:8152/authz

[STATIC]
parserClass = org.glite.authz.pep.pip.provider.StaticPIPIniConfigurationParser
staticAttributesFile = /path/to/some/file.ini
actionAttributes = actionId
resourceAttributes = resourceId
subjectAttributes = subjectId

And here is a static attribute definition file, note that this file can
include attributes which are not currently used as action, environment,
resource, or subject attributes:

[actionId]
id = urn:oasis:names:tc:xacml:1.0:action:action-id
values = submit

[resourceId]
id = urn:oasis:names:tc:xacml:1.0:resource:resource-id
values = http://example.org/wn

[subjectId]
id = urn:oasis:names:tc:xacml:1.0:subject:subject-id
datatype = urn:oasis:names:tc:xacml:1.0:data-type:x500Name
values = CN=foo

 Argus PEP Clients

Argus PEP Clients

pepcli

pepcli is the main ARGUS PEP client, based on the C API of the PEP client.

The pepcli command allows you to submit a XACML request to the PEP
daemon and display the XACML response.

The command is very useful to check if a XACML policy applies (decision
is Permit, Deny, Not Applicable or Indeterminate) for
the given XACML request. Or to check if the XACML response correspond to
the values you are expecting (uidgid, secondary-gids, …) for
the user mapping.

Installation

The pepcli command is by default installed with the argus-authz
metapackage, see Argus Deployment.
But you can also install it separately on your host for testing purpose.
To install it with YUM:

yum install argus-pepcli

Usage

Usage:
 pepcli --pepd <URL> --keyinfo <FILE> [options...]
 pepcli --pepd <URL> --subjectid <DN> [options...]

Submit a XACML Request to the PEPd and show the XACML Response.

Options:
 -p|--pepd <URL> Argus PEP server endpoint URL.
 -k|--keyinfo <FILE> XACML Subject key-info: proxy or X509 file.
 -s|--subjectid <DN> XACML Subject identifier: user DN (format RFC2253).
 -f|--fqan <FQAN> XACML Subject primary FQAN and FQANs
 Add multiple --fqan options for secondary FQANs.
 -r|--resourceid <URI> XACML Resource identifier.
 -a|--actionid <URI> XACML Action identifier.
 -t|--timeout <SEC> Connection timeout in second (default 30s).
 -x|--requestcontext Show effective XACML Request context.
 -v|--verbose Verbose.
 -q|--quiet Turn off output.
 -d|--debug Show debug information.
 -h|--help This help.
 -V|--version Display version and exit.
TLS options:
 --capath <DIR> Directory containing the server PEM encoded CA certificates.
 --cacert <FILE> Server PEM encoded CA certificate filename.
 --cert <FILE> Client PEM encoded certificate filename.
 --key <FILE> Client PEM encoded private key filename.
 --keypasswd <PASSWD> Password of the client private key
 If the --keypasswd is omitted and the private key is encrypted,
 then you will be prompted for the password.

The MAN page is also available: man pepcli

Return Code

The pepcli command return 0 when a valid XACML Response have
been received, but neither content of the XACML response, nor the
decision value are checked.

On error the pepcli command returns the following value:

	1 on memory allocation error

	2 invalid option

	3 certchain file or content (missing certificate block) error

	4 XACML request error

	5 PEP-C client library error (see output for more detail)

Examples

Submit a XACML Request to the PEP daemon endpoint URL
https://argus.example.org:8154/authz (using SSL/TLS client
authentication) for the resource identified by my_resource_id for
the action my_action_id, using the Grid proxy as credentials
/tmp/x509up_u637:

$ pepcli --pepd https://argus.example.org:8154/authz --capath /etc/grid-security/certificate --cert ~/.globus/usercert.pem --key ~/.globus/userkey.pem --keyinfo /tmp/x509up_u637--resourceid my_resource_id --actionid my_action_id
Decision: Permit

PEP Java Client Command Line

The PEP-J library contains a basic command line utility that is useful
for sending test requests to the PEP daemon.

The command line client, bin/testreq.sh, takes a single parameter,
the path (absolute or relative) path to a client configuration file.
This client will create an empty request and then run any configured
PIPs in order to populate it. The Static Attribute PIP
is very useful for creating custom requests with which to test.

 Argus PEP Client Library: C API

Argus PEP Client Library: C API

Documentation

The Doxygen documentation for the Argus PEP client library describes the
C API and have an example.

API: http://argus-authz.github.com/argus-pep-api-c/doc/modules.html

PEP XACML Object Model

[image: ../_images/Argus_PEP_ObjectModel.png]

Basic Example

Basically, to use the Argus PEP client API, you will have to the following steps.

First, import the header with

#include "argus/pep.h"

Create and initialize the PEP client handle with

PEP * pep = pep_initialize()

Set the PEP Server URL with

pep_setoption(pep,PEP_OPTION_ENDPOINT_URL,"https://pepd.example.org:8154/authz")

If the PEP Server URL is protected by HTTPS with client authentication (the default), you must also configure
the client certificate or proxy with

pep_setoption(pep,PEP_OPTION_ENDPOINT_CLIENT_CERT,"/tmp/x509up_u500")

The client private key or proxy key with

pep_setoption(pep,PEP_OPTION_ENDPOINT_CLIENT_KEY,"/tmp/x509up_u500")

And the server CA trust anchors path with

pep_setoption(pep,PEP_OPTION_ENDPOINT_SERVER_CAPATH,"/etc/grid-security/certificates")

Optionally, you can register some
Policy Information Points (PIP) [http://argus-authz.github.com/argus-pep-api-c/doc/group___p_i_p.html]
and
Obligation Handlers (OH) [http://argus-authz.github.com/argus-pep-api-c/doc/group___obligation_handler.html]
of your own with

pep_addpip(...)

and

pep_addobligationhandler(...)

Create a XACML Request and add the required Subject, Resource, Action
and Environment to it with

xacml_request_create()
xacml_request_addsubject(request,subject)

and so on.
See the
PEP XACML Object Model [http://argus-authz.github.com/argus-pep-api-c/doc/org.glite.authz.pep-api-c/group___x_a_c_m_l.html]
for the complete API.

Submit the request and get the response:

pep_authorize(pep,&request,&response)

Process the response (if not already done by your obligation handlers).
Release the PEP client handle with

pep_destroy(pep)

Complex Example

A more detailed PEP client example is available
http://argus-authz.github.com/argus-pep-api-c/doc/pep_client_example_8c-example.html

Multi-threaded Programming

The Argus PEP client library is thread-friendly, but you are not allowed
to share a PEP handle among multiple threads.

Each thread have to create its own PEP handle:

/* Each thread creates its own PEP handle */
PEP * pep= pep_initialize();

Within a thread you can reuse the PEP handle (multiple pep_authorize(..) calls).

If your threads are object (OO programming, …), it is recommended you
to create (pep_initialize) the PEP handle in the constructor, and
release it (pep_destroy) in the destructor.

Processing Authorization Decision

The PEP client MUST abide by the authorization decision as described in
here:

	If the decision is Permit, then the PEP client SHALL permit
access. If obligations accompany the decision, then the PEP
client SHALL permit access only if it understands and it can and will enforce those obligations.

	If the decision is Deny, then the PEP client SHALL deny access.

	If the decision is NotApplicable, meaning that no policy apply,
then the PEP client SHALL deny access.

	If the decision is Inderterminate, then the PEP client SHALL deny
access. The decision status message and status code should be used to
produce an error message. Example:

...
xacml_result_t * result= xacml_response_getresult(response,i);
fprintf(stdout,"response.result[%d].decision= %s\n", i, decision_tostring(xacml_result_getdecision(result)));
fprintf(stdout,"response.result[%d].resourceid= %s\n", i, xacml_result_getresourceid(result));
if (xacml_result_getdecision(result) == XACML_DECISION_INDETERMINATE) {
 xacml_status_t * status= xacml_result_getstatus(result);
 fprintf(stdout,"response.result[%d].status.message= %s\n", i, xacml_status_getmessage(status));
 statuscode= xacml_status_getcode(status);
 fprintf(stdout,"response.result[%d].status.code.value= %s\n", i, xacml_statuscode_getvalue(statuscode));
}
...

 Argus PEP Client: Java Programming Interface

Argus PEP Client: Java Programming Interface

The Argus PEP Java client library is used to communicate with the Argus
PEP daemon. It authorizes request and receives response back from Argus.

Javadoc

Javadoc for the PEP Java client API:
http://argus-authz.github.com/argus-pep-api-java/javadoc/2.X/index.html

PEP XACML Object Model

The PEP client XACML object model implemented in the package
org.glite.authz.common.model follow this schema:

[image: ../_images/Argus_PEP_ObjectModel.png]

Basic Example

This is a very simplified example, omitting all the error handling, on
how to create a PEP client, a request, and then authorize the request
and process the response.

	Create a PEP client configuration and initialize it:

PEPClientConfiguration config = new PEPClientConfiguration();
config.addPEPDaemonEndpoint("https://argus.example.org:8154/authz");

// trust and key material for the HTTPS connection with client authentication
config.se