
Argus Documentation
Release 1.6

Andrea Ceccanti, Valery Tschopp, Michel Jouvin

February 28, 2016

Contents

1 Argus Authorization Service 3
1.1 Summary . 3
1.2 Argus Service Installation . 4
1.3 Service Components . 4
1.4 Enabled Applications . 5
1.5 Support and Monitoring . 5
1.6 Development Information . 5
1.7 Additional Support . 7
1.8 About the name Argus . 7

2 Argus Concepts 9
2.1 Argus Introduction . 9
2.2 Attribute Based Descriptions . 9
2.3 Identifiers within Argus . 12
2.4 Resource ID . 12
2.5 Conclusion . 13

3 Argus: Policy Administration Point (PAP) 15
3.1 Argus Policy Administration Point (PAP) Installation . 15
3.2 Argus Policy Administration Point (PAP): Configuration . 15
3.3 Argus: Policy Administration Point (PAP): Operation . 19
3.4 Argus Policy Administration Point (PAP): Administration . 19
3.5 The Simplified Policy Language . 30
3.6 Argus: Policy Administration Point (PAP): Kown Issues . 34

4 Argus: Policy Decision Point (PDP) 35
4.1 Argus Policy Decision Point (PDP) Installation . 35
4.2 Argus Policy Decision Point (PDP): Configuration . 35
4.3 Argus Policy Decision Point (PDP): Operation . 39
4.4 Argus: Policy Decision Point (PDP): Troubleshooting . 41

5 Argus: Policy Enforcement Point Daemon (PEP) 43
5.1 Argus PEP Server Installation . 43
5.2 Argus PEP Server: Configuration . 43
5.3 Argus PEP Server: Operation . 47
5.4 Argus PEP Server: Troubleshooting . 49
5.5 Argus PEP Server Policy Information Points (PIP) . 49
5.6 Argus PEP Clients . 61

i

5.7 Argus PEP Client Library: C API . 63
5.8 Argus PEP Client: Java Programming Interface . 64
5.9 Argus GSI PEP Callout . 66
5.10 Argus PEP Server Obligation Handlers . 70

6 Argus Monitoring 77
6.1 Nagios Probes for Argus (UMD) . 77

7 Example of Authorization Requests and Policies 85
7.1 User Based Authorization . 85
7.2 Per-VO Pilot Job Authorization Policy . 86

8 Legacy Pages from Twiki site 89
8.1 Argus EMIR Publisher Configuration (EMI-3) . 89
8.2 Argus Services (EMI-1) Fine Tuning . 90
8.3 Argus Development Tools . 92
8.4 GGUS User Support for Argus . 93
8.5 Authorization Service: Load and Lifetime Testing . 94
8.6 Authorization Services Testing Summary . 97
8.7 Authorization Services Testing Summary . 99
8.8 Authorization Services Testing Summary . 101
8.9 Argus: Quick Start: Manual Installation . 102
8.10 Argus: Quick Start: Site Policy Setup . 103
8.11 Argus: Quick Start: Manual Configuration . 106
8.12 Quick Start: glite 3.2 Argus Installation . 106

9 Argus Service Deployment for EMI 109
9.1 Requirements . 109
9.2 Installation with YUM . 109
9.3 Update with YUM . 110
9.4 Configuration with YAIM . 110

10 Nagios Probes for Argus 113

11 EMIR Publisher for Argus 1.6 (EMI-3) 115

12 Known Issues 117
12.1 Timeouts for certificates from CAs that use OCSP . 117
12.2 Performance issue with Argus PEP Server (EMI-2, EMI-3, all versions) 117
12.3 Problem the EMI-3 update and Argus PEP Server v.1.6.1 . 118
12.4 Problem with Argus 1.6 (EMI-3) and fetch-crl . 118
12.5 Problem with Nagios plugins for Argus and TMP directory permission 119
12.6 Problem with Argus 1.5 (EMI-2) and CREAM . 119
12.7 Problem with upgrade from Argus 1.4 (EMI-1) to Argus 1.5 (EMI-2) 119

13 Authorization Service: Grid Map File Syntax 121
13.1 Description . 121
13.2 File Syntax . 121
13.3 Subject Keys . 121
13.4 Map Targets . 122

14 Argus YAIM Configuration for EMI 123
14.1 YAIM Configuration for ARGUS_server . 123

15 Indices and tables 125

ii

Argus Documentation, Release 1.6

Contents:

Contents 1

Argus Documentation, Release 1.6

2 Contents

CHAPTER 1

Argus Authorization Service

1.1 Summary

The Argus Authorization Service renders consistent authorization decisions for distributed services (e.g., user in-
terfaces, portals, computing elements, storage elements). The service is based on the XACML standard, and uses
authorization policies to determine if a user is allowed or denied to perform a certain action on a particular service.

The Argus Authorization Service is composed of three main components:

• The Policy Administration Point (PAP) provides the tools to author authorization policies, organize them in the
local repository and configure policy distribution among remote PAPs.

• The Policy Decision Point (PDP) implements the authorization engine, and is responsible for the evaluation of
the authorization requests against the XACML policies retrieved from the PAP.

• The Policy Enforcement Point Server (PEP Server) ensures the integrity and consistency of the authorization
requests received from the PEP clients. Lightweight PEP client libraries are also provided to ease the integration
and interoperability with other EMI services or components.

The following graphic shows the interaction between the components of the service:

Fig. 1.1: Argus service components

Note: In Argus, the PEP is separated in a client/server architecture. The PEP Server handles the lightweight PEP
client requests, and runs on the Argus node.

3

Argus Documentation, Release 1.6

1.2 Argus Service Installation

The following section provides instructions for setting up an Argus environment quickly. It does not provide an
exhaustive description of every possible deployment model or configuration option, that can be found in the following
Service Components and Enabled Applications sections.

Before you continue it is recommend that you read this introduction to the Argus system. This will provide you with
a better understanding of how the components work together, what information passes between the components and
how policies are formed.

1.2.1 Argus EMI Deployment

For EMI, the Argus Service is installed with YUM, and configured with YAIM. Please follow the Argus Deployment
for EMI documentation.

1.2.2 gLExec Worker Node with Argus Deployment

To install and configure an Argus compatible gLExec worker node, follow these GLExec Argus Quick Installation
Guide

1.3 Service Components

If you are beginning to install the authorization service from scratch, you should install the components in the order
listed here; PAP, then PDP, then PEPd. You don’t have to, but it makes the most sense for most use cases.

1.3.1 PAP: Policy Administration Point

The Policy Administration Point (PAP) provides three major functions:

• Provide the tools for authoring policies

• Store and manage authored policies

• Provide managed policies to other authorization service components

1.3.2 PDP: Policy Decision Point

The Policy Decision Point (PDP) is a policy evaluation engine. The PDP receives authorization requests from Policy
Enforcement Points and evaluates these requests against authorization policies retrieved from the PAP.

Installation Configuration Operation Troubleshooting

1.3.3 PEP: Policy Enforcement Point

The Policy Enforcement Point (PEP) is the client to the authorization service. It gathers information relevant to an
authorization request (e.g. who the user, what action they are attempting to perform, which service they are attempting
to perform the action on, etc.) and sends the request to the PDP for evaluation. The PEP then acts upon returned result
by allowing the request to proceed (in the case a positive authorization decision) or by denying the action (in the event
of a negative decision).

In Argus, the PEP itself has a client/server architecture

4 Chapter 1. Argus Authorization Service

https://wiki.nikhef.nl/grid/GLExec_Argus_Quick_Installation_Guide
https://wiki.nikhef.nl/grid/GLExec_Argus_Quick_Installation_Guide

Argus Documentation, Release 1.6

• The PEP Server handles the lightweight PEP client requests, and runs on the Argus node. See the following
links for more information on the PEP Server: Installation, Configuration, Operation, Troubleshooting

• Lightweight PEP client libraries are available to authorize requests from the application side, and to enforce
decision locally. There are two variants available:

– PEP Client C API: Programming Interface (API)

– PEP Client Java API: Programming Interface (API)

PEP command-line clients are also available

1.4 Enabled Applications

The following applications contain an Argus PEP client and can make authorization requests to the Argus service.

Table 1.1: Argus-enabled Applications

GSI PEP Callout Introduction Installation Configuration Troubleshooting
gLExec with PEP Plugin Introduction Installation Configuration Troubleshooting

1.5 Support and Monitoring

1.5.1 GGUS Support

General support (installation, site administrator) for Argus is available through GGUS

1.5.2 Argus Support Mailing List

Argus specific (developer, site administrator) questions can be sent directly to the argus-support@googlegroups.com
mailing list. You don’t need a Google email address or a Google account to send or receive emails from this mailing
list.

• Subscription: To subscribe to the support mailing list, simply send an email to: argus-
support+subscribe@googlegroups.com

• Unsubscribe: You can unsubscribe from the list at anytime by sending an email to: argus-
support+unsubscribe@googlegroups.com

NOTE: The mailing list was previously argus-support@cern.ch, but it have been migrated to argus-
support@googlegroups.com at the end of the EMI project (April 2013).

1.5.3 Nagios Monitoring

Nagios plugins are available to monitor an Argus server.

• EMI: EMI Argus Nagios Probes Documentation

1.6 Development Information

Argus is an open-source product hosted on GitHub. In addition to this user-oriented documentation, you can find a
description of Argus architecture and main components at Argus main site.

1.4. Enabled Applications 5

https://wiki.nikhef.nl/grid/GLExec_Argus_Quick_Installation_Guide#Introduction
https://wiki.nikhef.nl/grid/GLExec_Argus_Quick_Installation_Guide#Package_installation
https://wiki.nikhef.nl/grid/GLExec_Argus_Quick_Installation_Guide#Manual_configuration
https://wiki.nikhef.nl/grid/GLExec_Argus_Quick_Installation_Guide#Debugging_hints
https://ggus.eu
mailto:argus-support@googlegroups.com
https://groups.google.com/d/forum/argus-support
mailto:argus-support+subscribe@googlegroups.com
mailto:argus-support+subscribe@googlegroups.com
mailto:argus-support+unsubscribe@googlegroups.com
mailto:argus-support+unsubscribe@googlegroups.com
mailto:argus-support@cern.ch
mailto:argus-support@googlegroups.com
mailto:argus-support@googlegroups.com
https://github.com/argus-authz
http://argus-authz.github.io

Argus Documentation, Release 1.6

1.6.1 Specifications

• XACML 2.0 Specifications eXtensible Access Control Markup Language (XACML) Version 2.0

• SAML 2.0 Profile of XACML, Version 2 (Working Draft 5)

• XACML Profile for the gLite WN XACML Grid Worker Node Authorization Profile (v. 1.0)

• XACML Profile for the gLite CE XACML Grid Computing Element Authorization Profile (v. 1.0)

• XACML Authorization Profile for EMI Common XACML Authorization Profile (v. 1.1)

1.6.2 Requirements

• Requirements Document (EDMS document 944192)

• Testing Plan (EDMS document 986067)

1.6.3 Presentations

• 20110531-EMI_AllHands_2011-Argus_Integration.ppt: Argus - EMI Authorization Integration (EMI AH 2011,
31 May 2011, Lund)

• 20110412-EGI_UF_2011-Argus.ppt: Argus - EMI Authorization Service (EGI UF 2011, 12 April 2011, Vilnus)

• 20100917_EGI-TF_ArgusSecurity.ppt: Argus Security (EGI TF 2010 Security Session, 17 Sept. 2010, Amster-
dam)

• introduction_authz_service.ppt: General introduction to the authorization service

• 100602_argus_intro_rod.ppt: Introduction to Argus for ROD (EGI ROD Workshop, 2 June 2010, Amsterdam)

1.6.4 Souce Code Information

We have migrated the Argus source code to GitHub.

• Argus Authorization Service: https://github.com/argus-authz

The source code was previousely stored in the CERN subversion server. Please do not use the SVN repository
anymore

• WebSVN View: https://svnweb.cern.ch/world/wsvn/glxa

1.6.5 Development Tools

The Argus PT uses the following development tools.

For performance and load testing we use the following testing suite.

1.6.6 Argus Production Settings and Optimization

Production sites can optimize the Argus Service settings to their specific needs. Please have a look at the Argus Fine
Tuning documentation.

6 Chapter 1. Argus Authorization Service

http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://www.oasis-open.org/committees/download.php/24681/xacml-profile-saml2.0-v2-spec-wd-5-en.pdf
https://edms.cern.ch/document/1058175
https://edms.cern.ch/document/1078881/
https://twiki.cern.ch/twiki/bin/view/EMI/CommonXACMLProfileV1_1
https://edms.cern.ch/document/944192
https://edms.cern.ch/document/986067
http://github.com
https://github.com/argus-authz
https://svnweb.cern.ch/world/wsvn/glxa

Argus Documentation, Release 1.6

1.6.7 Perfomance and Load Testing

Results and metrics of the performance and load testing can be found here:

• For a physical machine:

– Versions 1.3.0 and 1.3.1

– Version 1.4.0

• For a virtual machine:

– Version 1.4.0

1.7 Additional Support

• HERAS-AF project has supported the project by providing a good XACML policy engine and excellent, ongo-
ing, support of their code.

• YourKit is kindly supporting this open source projects with its full-featured Java Profiler. YourKit, LLC is the
creator of innovative and intelligent tools for profiling Java and .NET applications. Take a look at YourKit’s
leading software products: YourKit Java Profiler and YourKit .NET Profiler.

• This product includes software developed by the Caucho Technology.

1.8 About the name Argus

In Greek mythology Argus was a 100-eyed giant that was meant to watch and protect various things and people
including the Goddess Io. He was slain by Hermes but the gods chose to preserve his hundred eyes and affix them to
the tail-feathers of a brilliantly colored bird, the peacock, in homage. The peacock logo is provided by the royalty free
clip art site clker.com.

1.7. Additional Support 7

http://www.herasaf.org/index.php
http://www.yourkit.com/java/profiler/index.jsp
http://www.yourkit.com/.net/profiler/index.jsp
http://www.caucho.com/
http://www.clker.com

Argus Documentation, Release 1.6

8 Chapter 1. Argus Authorization Service

CHAPTER 2

Argus Concepts

2.1 Argus Introduction

The Argus authorization service is designed to answer questions in the form of Can user X perform action Y on
resource Z at this time? Not surprisingly, two pieces of information are required to answer this question; the request
that describes X, Y, and Z and the policy against which the request is evaluated. The purpose of this introduction is
to provide an understanding of the logical contents of the request and the policy. Such an understanding will help in
creating appropriate access control policies for a service. This introduction does not cover the command line tools,
simple policy language, or underlying XACML policies used by the authorization service. That information can be
found in the Policy Administration Point documentation.

2.2 Attribute Based Descriptions

Before discussing the request and response it is important to understand how users, actions, and resources are identi-
fied. Most grid deployers will be familiar with X.509 subject distinguished names (DNs) based access control. Access
control systems which render authorization decisions based only on an identifier, like a subject DN, are known as
identity-based access control systems. However, an application usually knows more about a user than simply their
identifier. It may know for which organization the user works, or groups and professional organizations to which
the user belongs. An access control system which can render a decision based on a set of attributes describing the
users/resources/actions is known as an attribute-based access control system. Note, an attribute-based access control
system where policies are only based on an identifier attribute is functionally equivalent to an identity-based access
control system.

Argus is an attribute-based system. It uses attributes to identify the user attempting to perform an action, the resource
on which the action is to be performed, the action itself, and other environmental information. Within the system an
attribute is made of 4 pieces of information: a unique identifier/name, one or more values for the attribute, the data
type of the attribute values (e.g. a string, an integer, an email address), and an optional identifier for the issuer of the
attribute. The following are examples of attribute based descriptions.

In an identity based system a user (more properly known as a subject) might have the identity ‘jsmith’. In an attribute
based system the subject might be identified by the following attributes:

• id: subject-id, datatype: string, value: jsmith

• id: org, datatype: string, value: CERN

• id: affiliation, datatype: string, value: employee

• id: vo, datatype: string, value: lhcb, cms, atlas

9

Argus Documentation, Release 1.6

In another example an action in an identity based access control system might be identified by the string ‘submit-job’.
In an attribute based system the action might be identified with the following attributes:

• id: action-id, datatype: string, value: submit-job

• id: pilot-job, datatype: boolean, value: false

• id: executable, datatype: string, value: /usr/bin/myexec

• id: expected-execution-duration, datatype: integer, value: 10

The exact attributes available within a request are determined by the application seeking an authorization decision.
Obviously each unique application will have different actions it wishes to protect, a different means of describing
itself, and possibly different information about the subject. Also, as can be seen by these examples, the amount of
information upon which a decision could be based is larger within an attribute based access control system than an
identity based system. As demonstrated, the single piece of identity data used in an identity based system can also be
used within an attribute based one.

2.2.1 The Request

An authorization decision request is simply a set of four different attributes collections. The four collections are:

• subject - contains attribute describing user who is trying to perform an action

• action - contains attributes describing the action the subject is attempting to perform

• resource - contains attributes describing the program within which the subject is attempting to perform the action

• environment - contains attributes relevant to the decision but not part of the previous three collection (e.g.
time/date of the request, machine used by the subject, etc.).

A request must contain at least one attribute in each of the subject, action, and resource sets but it is common for there
to be no environment attributes.

2.2.2 The Policy

A policy is a collection of rules that are evaluated to determine the result of an authorization request. The result of a
policy evaluation may be:

• permit - indicates the subject is permitted to perform the action on the resource

• deny - indicates the subject is not permitted to perform the action on the resource

• not applicable - indicates no policy applied to the request and so no decision could be reached

• indeterminate - indicates there was an error evaluating the policy

In order to determine whether a rule is met each rule contains a target. The target defines one or more combination of
attribute which trigger the rule. When more than one combination is listed any one may trigger the rule. For example,
the target of a rule may stipulate the following combination:

• subject attribute vo has a value of atlas and the id of the action is job-submit and the id of the resource is
cern-ce

• subject attribute id has a value of john and the id of the action is job-submit and the id of the resource is
cern-ce

• subject attribute id has a value of jane and the id of the action is job-submit and the id of the resource is
cern-ce

10 Chapter 2. Argus Concepts

Argus Documentation, Release 1.6

As you can see, each combination of attributes within the target needs to be complete (that is they need to describe
the whole situation that would trigger a rule), there is no mechanism for expressing logical operations like AND, OR,
NOT. As you can imagine this could lead to a lot of repeated information. To help alleviate this, policies, the container
of rules, can also contain targets. Therefore the previous rule target could be written as follows:

• A policy with target: the id of the action is job-submit and the id of the resource is cern-ce

• A permit rule with the target combination:

– subject attribute vo has a value of atlas

– subject attribute id has a value of john

– subject attribute id has a value of jane

You can also have multiple rules within a single policy, for example:

• A policy with target: the id of the action is job-submit and the id of the resource is cern-ce

• A permit rule with the target combinations:

– subject attribute vo has a value of atlas

– subject attribute id has a value of john

– subject attribute id has a value of jane

• A deny rule with the target combinations:

– subject attribute id has a value of christoph

In fact, policies can even contain other policies which helps in the case where you may want a policy about a resource
which in turn contains a policy about actions (at that resource) and finally rules for that action. For example:

• A policy with target: id of the resource is cern-ce contains:

– A policy with target: the id of the action is job-submit

– A permit rule with the target combination:

* subject attribute vo has a value of atlas

– A deny rule with the target combination:

* subject attribute id has a value of christoph

– A policy with target: the id of the action is job-manage

– A permit rule with the target combination:

* subject attribute id has a value of john

* subject attribute id has a value of jane

2.2.3 Not Applicable and Indeterminate Results

In some cases, either because no policy applied to the request or because there was an internal error evaluating a
policy, a decision other than permit or deny is returned. In the event that a result of not applicable or
indeterminate is returned Argus will treat this as a deny. Thus Argus is said to be a deny biased system.

2.2.4 Example Requests and Policies

Look at the dedicated page <argus_rquest_and_policy_examples> for request and policy examples.

2.2. Attribute Based Descriptions 11

Argus Documentation, Release 1.6

2.3 Identifiers within Argus

Argus makes use of various identifiers for attribute identifiers and values. The identifiers must by URIs (URNs or
URLs). The responsibility for defining such identifiers falls to different individuals, depending on the expected scope
of use of the identifiers.

2.3.1 Entity ID

For those familiar with other grid services one of the first differences that you will encounter when setting up Argus
is the requirement to provide entity IDs for the service components. These IDs provide a way of uniquely identify
a logical service component. We use the term “logical service component” because each service component may be
clustered. So the logical instance is the set containing all the physical instances participating in the cluster.

It is the deployer of service component that determines this identifier. The identifier may be any URI for which the
deployer is authoritative. That is, it must come from a domain (in the case of a URL) or namespace (in the case
of a URN) that the deployer controls. The following formula is a reasonable means for generating these identifiers:
http://{authz_domain}/{service_component_identifier}. The domain should be a domain name
that is not linked to any particular servers hostname but is instead related to the service (e.g. authz.example.org). The
component identifier should be pap, pdp, or pepd depending on which component is being installed.

If an organization runs more than one component an additional qualifier may be added to appended to the
path of the URL identifier. For example an organization that runs a different PEPd for each computer
cluster they operate might choose the entity IDs http://authz.example.org/pepd/cluster1 and
http://authz.example.org/pepd/cluster2

2.4 Resource ID

The resource identifier used to identify the resource being protected by the authorization service (e.g. a compute
cluster, a portal). This identifier is specific to a given instance of the resource. If an organization runs two different
portals each portal receives a different ID. These identifiers may then be used within a policy in order to indicate
policies that apply to the specific resource (i.e. policy A applies to portal 1 and policy B applies to portal 2).

The resource identifier is selected by the deployer of the resource. Two reasonable ways for generating this identifier
are:

• if the resource has a natural URI identifier associated with it (e.g. the main page of the portal) that may be used

• if the resource does not have a natural URI identifier a synthetic one may be created with the following formula:
http://{authz_domain}/resource/{resource_identifier} The authz_domain should be
a domain name that is not linked to any particular server’s hostname but is instead related to the authorization
service (e.g. authz.example.org). The resource identifier is simply a unique string for the protected resource. A
human intelligible string is best (e.g. sequencingPortal).

2.4.1 Action ID

The action identifier is used to identify the action for which the resource is requesting authorization. This action
identifier is specific to a given piece of software but all instances of that application use the same identifier for a given
action, it is not deployment specific.

The action identifier is selected by the developer of the application. The identifier may be generated in one of two
ways:

12 Chapter 2. Argus Concepts

http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc2141

Argus Documentation, Release 1.6

• If the application is widely used a request could be made to a standards body, such as IANA, for an unique
identifier for each action of the application. This way all implementations of the specification will likely use the
same identifier and thus make it a bit easier for policy writers.

• The application developer may generate an identifier. A reasonable formula for such an identifier is:
http://{application_domain_name}/{application_name}/action/{action_id}
where the domain name is the domain component of the application’s
website and the action ID is a human readable string for the action (e.g.
=readFile, addUser)

2.4.2 Attribute ID

The attributes produced by an application identify bits of information that the application was able to gather and make
available for an authorization request. The identifiers are specific to a given piece of software but all instances of that
application use the same identifier for a given attribute, it is not deployment specific.

The attribute identifier is selected by the developer of the application. The identifier may be generated in a couple of
ways:

• If the attribute is already defined by an existing standard (the LDAP schema standards are a great place to
start looking) the identifier from that standard may be used. In the case of the LDAP schema the URN
urn:oid:{ldap_attribute_oid} can be used.

• If the attribute is likely to be widely used a request could be made to a standards body, such as IANA, for an
unique identifier for this attribute. This way all implementations of the specification will likely use the same
identifier and thus make it a bit easier for policy writers.

• The application developer may generate an identifier. A reasonable formula for such an identifier is:
http://{application_domain_name}/{application_name}/attribute/{attribute_id}
where the domain name is the domain component of the application’s website and the attribute ID is a human
readable string for the attribute (e.g. username, entitlements)

In general, application developers should prefer already defined attributes over creating their own.

2.5 Conclusion

At this point you should understand what an attribute is, that a request is a made of subject, action, resource, and
environment attributes, what a rule is and that policies are a collection of rules. You should also understand that a
policy or rule is triggered if any one of the combination of attribute/values listed within its target is present within the
request.

2.5. Conclusion 13

http://www.iana.org/protocols
http://www.iana.org/protocols

Argus Documentation, Release 1.6

14 Chapter 2. Argus Concepts

CHAPTER 3

Argus: Policy Administration Point (PAP)

The Policy Administration Point (PAP) provides three major functions:

• Provide the tools for authoring policies

• Store and manage authored policies

• Provide managed policies to other authorization service components

3.1 Argus Policy Administration Point (PAP) Installation

To deploy the Argus PAP for EMI, Please follow the documentation Argus Deployment for EMI.

3.2 Argus Policy Administration Point (PAP): Configuration

3.2.1 Configuration Files

The PAP is configured through the use of two files: pap_configuration.ini and
pap_authorization.ini, located in the /etc/argus/pap (EMI), or $PAP_HOME/conf (gLite), di-
rectory. Most of the information contained in these files can also be set through the command line interface (which is
the recommended way to do configuration on the PAP).

3.2.2 Service configuration file

The service is primarily configured through the pap_configuration.ini configuration file. This file is a stan-
dard INI file with five defined sections.

Section: [paps]

This section contains configuration about paps. The information in this section should be set via the PAP CLI.

A paps can be defined by providing the following information (the R value in the Required? column indicates infor-
mation that is required only for remote paps):

15

Argus Documentation, Release 1.6

Property Description Re-
quired?

Default
Value

alias.type Defines a pap as local or remote . Y None
alias.public Visibility of the pap: true or false. If false its policies are not sent

to other paps.
N false

alias.enabled true or false. If false its policies are not sent to PDPs. N false
alias.dn DN of the PAP to get policies from. R None
alias.hostname Hostname of the PAP to get policies from. R None
alias.port Port of the PAP to get policies from. N 8150
alias.path Path of the services exposed by the PAP to get policies from. N /pap/services
alias.protocol Protocol to use to contact the remote PAP. N https

Section: [paps:properties]

This section contains information about policy distribution and pap ordering.

Prop-
erty

Description Re-
quired?

Default Value

poll_intervalThe polling interval (in seconds) for retrieving remote policies. Y None. Recommended
value is 14400 (4
hours).

or-
der-
ing

Comma separated list of pap aliases. Example: alias-1, alias-2, ...,
alias-n. Defines the order of evaluation of the policies of the paps, that
means that the policies of pap “alias-1” are evaluated for first, then the
policies of pap “alias-2” and so on.

N If not specified the
default pap is
always the first one.

Section: [repository]

This section contains information about the PAP policy repository.

Property Description Re-
quired?

Default
Value

location Path to the repository directory. N $PAP_HOME/repository
consis-
tency_check

Forces a consistency check of the repository at startup. N false

consis-
tency_check.repair

if set to true automatically fixes problems detected by the consistency
check (usually means deleting the corrupted policies).

N false

Section: [standalone-service]

This section contains information about the PAP standalone service.

16 Chapter 3. Argus: Policy Administration Point (PAP)

Argus Documentation, Release 1.6

Prop-
erty

Description Re-
quired?

Default Value

host-
name

The hostname or IP address the service will bind to N 127.0.0.1

port The service port number N 8150
shut-
down_port

The service shutdown port number N 8151

shut-
down_command

The command string that must be received on the
shutdown port in order to shutdown the service. The
command is needed in order to prevent unauthorized
shutdown commands coming from localhost. This is
effective only if the pap_configuration.ini file is not
world-readable. If the option is not present in
configuration, no check on the command will be made.

N shutdown

en-
tity_id

This is a unique identifier for the PAP. It must be a URI
(URL or URN). If a URL is used it need not resolve to
any specific webpage.

N The service endpoint, e.g.
https://pap.cern.ch:8150/pap/services/ProvisioningService

Section: [security]

This sections contains information about PAP security configuration.

Prop-
erty

Description Re-
quired?

Default
Value

certifi-
cate

The X.509 pem-econded service certificate Y /etc/grid-
security/hostcert.pem

pri-
vate_key

The unencrypted private key bound to the certificate Y /etc/grid-
security/hostkey.pem

trust_store_dirThe directory where CA files and CRL are looked for N /etc/grid-
security/certificates

crl_update_intervalHow frequently the PAP should update CRLs, CAs and namespaces from
the filesystem. The interval is defined as a string with the following format:
N{s,m,h,d} where N in the number of either (s=seconds, m=minutes,
h=hours, d=days).

N 30m

3.2.3 Service Access Control

Access control rules are configured through the pap_authorization.ini configuration file. Authorization is
based on off of the Subject DN or VOMS attribute within the client certificate used to authenticate to the PAP.

PAP permissions

The authorization layer is based on an Access Control List (ACL), composed of several Access Control Entries (ACEs).
Each ACE defines the actions that an administrator is allowed to execute on the PAP. Administrators’ privileges are
defined in terms of PAP permission flags, whose meaning is described in the table below:

3.2. Argus Policy Administration Point (PAP): Configuration 17

Argus Documentation, Release 1.6

Permission Flag Meaning
POLICY_READ_LOCAL Allows read access to locally defined policies
POLICY_READ_REMOTE Allows read access to policies imported from remote PAPs
POLICY_WRITE Allows write access to locally defined policies
CONFIGURATION_READ Allows read access to PAP configuration
CONFIGURATION_WRITE Allows write access to PAP configuration
ALL All of the above permissions

A set of permission flags can be assigned to an administrator by defining an ACE in the pap_authorization.ini
configuration file or by using the authorization management commands provided by the pap-admin command line
interface.

ACEs are expressed as

<principal> : <permission>

couples.

The principal part of the ACE is either:

• ANYONE, to assign privileges to any authenticated user (i.e., any user that presents a trusted certificate).

• a VOMS FQAN, e.g., /atlas/Role=VO-Admin

• a quoted X509 certificate subject, e.g., "/C=IT/O=INFN/OU=Personal
Certificate/L=CNAF/CN=Andrea Ceccanti"

The permission part of the ACE is either:

• a single PAP permission flag, e.g CONFIGURATION_READ

• a | separated list of PAP permission flags, e.g. POLICY_READ_LOCAL|CONFIGURATION_READ, to grant
a set of permissions.

So, for example, to grant POLICY_READ_LOCAL and POLICY_READ_REMOTE permissions to a user identified by
an x509 certificate with /C=IT/O=INFN/OU=Personal Certificate/L=CNAF/CN=Andrea Ceccanti
subject, one should write:

"/C=IT/O=INFN/OU=Personal Certificate/L=CNAF/CN=Andrea Ceccanti" : POLICY_READ_LOCAL|POLICY_READ_REMOTE

Note that the subject has been put into quotes! For VOMS FQANs this is not needed (FQAN syntax does not allow
whitespaces inside the FQAN), so one could write:

/atlas/Role=PAP-Admin : ALL

Authorization entries are loaded at PAP service startup time so any pap_authorization.ini modifications done
“by hand” while the PAP service is running do not take effect until the PAP service is restarted.

To modify the PAP authorization configuration at runtime, use the authorization management commands provided
by the pap-admin CLI. Changes made to the PAP ACL by these commands are immediately reflected on the
pap_authorization.ini file.

Configuration File Syntax

In the pap_authorization.ini file, ACEs are grouped in two stanzas according to the type of the principal.
Currently, two stanzas are supported:

• [dn], that lists ACEs defined for principals identified by an X509 certificate subject.

• [fqan], that lists ACEs defined for principals identified by VOMS fqans.

An example of configuration file is given below:

18 Chapter 3. Argus: Policy Administration Point (PAP)

Argus Documentation, Release 1.6

[dn]

"/C=IT/O=INFN/OU=Personal Certificate/L=CNAF/CN=Andrea Ceccanti" : ALL

ANYONE : CONFIGURATION_READ|CONFIGURATION_WRITE

[fqan]

/voms-ws/Role=PAP-Admin : ALL

3.3 Argus: Policy Administration Point (PAP): Operation

3.3.1 Service Operation Commands

The service can then be started using the PAP_HOME/bin/pap-standalone start command.

The service can be stopped using the PAP_HOME/bin/pap-standalone stop command.

3.3.2 Service Ports

• Default standalone service port: 8150

• Default standalone shutdown service and status port: 8151

3.3.3 Service Endpoints

• /pap/services/ProvisioningService : this endpoint provides the policy provisioning interface

• /shutdown : this endpoint instructs the PAP standalone service to shutdown and is reachable only from
localhost on the configured shutdown and status port

• /status : this endpoint provides current status information on the PAP is reachable only from localhost on
the configured shutdown and status port

All the web services implemented by the PAP can be reached at the /pap/services/ context.

3.3.4 Service Logs

The PAP standalone log file (pap-standalone.log) can be found in the $PAP_HOME/logs directory. If the
PAP is deployed on top of tomcat, the log file (pap.log) can be found in the $CATALINA_HOME/logs directory.

3.4 Argus Policy Administration Point (PAP): Administration

The CLI (Command Line Interface) allows to perform all of the policy management operations as well as to set most
of the configuration information of the PAP including authorization settings. All these operations are accessible by
means of (sub)commands of the PAP CLI and they are divided in three sections: policy management, pap management
and authorization management.

The command to invoke the CLI is pap-admin.

3.3. Argus: Policy Administration Point (PAP): Operation 19

Argus Documentation, Release 1.6

3.4.1 Running the pap-admin client

Type:

pap-admin --help

to get a list of the commands supported by the current version of the PAP command line client.

The general usage is the following:

usage: pap-admin [global-options] <command> [options] [args]

• global-options : are options shared by all commands (all these options are reported by --help).

• command : the command to perform.

• options : command specific options.

Type:

pap-admin <command> --help

to see the available command specific options.

Global options:

• -h,--help: help message;

• -v,--verbose: set verbose commands output;

• --host <arg>: specifies the target PAP hostname (default is localhost). This option defines the PAP endpoint
to be contacted as follows: https://arg:port/pap/services/;

• --port <arg>: specifies the port on which the target PAP is listening (default is 8150);

• --url <arg>: specifies the full target PAP endpoint (default: https://localhost:8150/pap/services/);

• --cert <arg>: specifies non-standard user certificate;

• --key <arg>: specifies non-standard user private key;

• --password <arg>: specifies the password used to decrypt the user’s private key;

• --proxy <arg>: specifies a user proxy to be used for authentication;

By default, the pap-admin is configured to contact a PAP daemon on localhost port 8150 (i.e., the standalone PAP
daemon). If you want to contact a PAP on another host use the --host option, a PAP listening on a different port use
the --port option. Alternatively the full endpoint can be specified with the --url option.

NOTE: The Argus PDP caches the policy pulled from the PAP. If you make policy changes to the PAP you will need
to restart the PDP in order to force it to refresh its policy. Also, the PEPd caches results from the PDP for a short time
(up to 10 minutes, by default) so you may need to restart the PEPd as well.

Exit status

Each command returns 0 for success or non-zero in case of error.

X509 authentication A valid X509 certificate or proxy certificate is needed in order to run the
pap-admin client. The certificate to be used by the command is found as follows:

1. if the user is root then the client looks for host certificate at the usual location, i.e.
/etc/grid-security/hostcert.pem and /etc/grid-security/hostkey.pem. These lo-

20 Chapter 3. Argus: Policy Administration Point (PAP)

https://arg:port/pap/services/
https://localhost:8150/pap/services/

Argus Documentation, Release 1.6

cations can be overridden by setting the X509_USER_CERT and X509_USER_KEY environment vari-
ables. 2. if the user is not root, then the client looks for a proxy certificate at the usual location, i.e.,
/tmp/x509up_u%GREEN%<uid>%ENDCOLOR%. The default proxy location can be overridden using
the X509_USER_PROXY environment variable. If no proxy is found, then the client looks for a cer-
tificate (and the relative private key) at the usual location, i.e., $HOME/.globus/usercert.pem and
$HOME/.globus/userkey.pem. These locations can be overriden by setting the X509_USER_CERT and
X509_USER_KEY environment variables.

This behaviour can be overridden by specifying the --cert, --key and --proxy command line options.

Client configuration (since version 1.3.0)

The pap-admin.properties file, found in /etc/argus/pap (EMI) or /opt/argus/pap/conf (gLite),
allows to set the following properties:

Prop-
erty

Description Default
Value

host The PAP host that will be contacted by the pap-admin CLI if no host is explicitly
specified with the --host option

localhost

port The remote PAP service port number 8150

This property file is expecially useful when administering a PAP installed on a remote machine.

3.4.2 Policy Management Commands

This set of commands allows to perform policy management operations. All the commands in this section modifies
the default pap. In order to target another local pap use the option --pap <alias>.

Command: list-policies

List policies. By default the policies of the default pap are listed unless option --pap is specified.

usage: pap-admin [global-options] list-policies [options]

Command specific options:

• --pap <alias>: list policies of pap “alias” (default pap is assumed if this option is missing);

• --all: list policies of all the defined paps;

• -srai,--show-ra-ids: show resource and action ids;

• -sai,--show-all-ids: show all ids (resource, action and rule ids);

• --show-xacml: print policies using XACML.

Command: ban

Allows to ban an attribute (i.e. SUBJECT, FQAN, CA, etc.).

A deny rule is added for the given attribute into the specified resource/action value. If the resource or the action values
are not specified then ”.*” is assumed.

usage: pap-admin [global-options] ban [options] <id> <value>

• id: id of the attribute. The list of supported id depends on the Argus version:

3.4. Argus Policy Administration Point (PAP): Administration 21

Argus Documentation, Release 1.6

– Argus v. 1.0: dn, ca, vo, fqan, pfqan.

– Argus v. 1.1: subject, subject-issuer, vo, fqan, pfqan.

• value: value of the attribute - note: If you are using Argus v. 1.0, the DN must be in RFC2253 format,
which can be obtained from openssl using the command openssl x509 -in <cert.pem> -noout
-subject -nameopt rfc2253

Command specific options:

• -a,--action <value>: specify an action value (default is ”.*”)

• -r,--resource <value>: specify a resource value (default is ”.*”)

• --pap <alias>: add the policy to the pap “alias” (default pap is assumed if this option is missing)

• --private: set the policy as private

• --public: set the policy as public

Semantic of the command: the resource and the action where the deny rule is inserted are chosen as follows:

• if the first resource found in the repository matches the given one, then that resource is used, otherwise a new
one is created.

• if a matching resource was found, then if its first action matches the given one then this action is used, otherwise
a new action is created (i.e. inside the new resource or inside the matched resource).

• otherwise a new resource/action are created and inserted on the top.

Example:

pap-admin ban subject "CN=host.test.foo.it, L=FOO, OU=Host, O=ORGANIZATION, C=IT"

Command: un-ban

Allows to un-ban an attribute (i.e. SUBJECT, FQAN, CA, etc.), that means removing a deny rule (if it exists in the
given resource/action) for the given attribute.

usage: pap-admin [global-options] un-ban [options] <id> <value>

• id: id of the attribute. The list of supported id depends on the Argus version:

– Argus v. 1.0: dn, ca, vo, fqan, pfqan.

– Argus v. 1.1: subject, subject-issuer, vo, fqan, pfqan.

• value: value of the attribute - note: If you are using Argus v. 1.0, the DN must be in RFC2253 format,
which can be obtained from openssl using the command openssl x509 -in <cert.pem> -noout
-subject -nameopt rfc2253

Command specific options:

• -a,--action <value>: specify an action value (default is ”.*”)

• -r,--resource <value>: specify a resource value (default is ”.*”)

• --pap <alias>: remove the ban policy from the pap alias (default pap is assumed if this option is missing)

Semantic of the command: the target resource and action to search the deny rule for are chosen as follows:

• the target resource is the first matching resource in the repository;

• inside the target resource the target action is the first matching action ;

• if no target resource or action were found than the result is an error message saying “ban policy not found”.

22 Chapter 3. Argus: Policy Administration Point (PAP)

Argus Documentation, Release 1.6

Example:

pap-admin un-ban subject "CN=host.test.foo.it, L=FOO, OU=Host, O=ORGANIZATION, C=IT"

Command: add-policy

Add a permit/deny policy.

usage: pap-admin [global-options] add-policy [options] <permit|deny> <id=value>...

• permit|deny: effect of the policy.

• id=value: a string in the form “<id>=<value>”, where id is any of the attribute ids that can be specified in
the simplified policy language and value the value to be assigned (e.g. fqan=/vo/group).

Required command options: 1 --action-id <action-id> optionally with --rule-id <rule-id>: allows
to specify an action-id to insert the policy into. 1 --resource <value> and --action <value>: allows to
specify a resource/action value to insert the policy into.

The two groups (1 and 2) of required options are mutually exclusive.

This command allows to add a (permit/deny) rule into an action by specifying an action-id (in this case the action
must already exist) or a resource/action value. In the latter case a new resource and/or action are created if they don’t
already exist. The command returns an error if there are more than one existing resource and/or action with the same
value. By default the rule is inserted at the top of an action unless the --bottom option is given. If the --rule-id
is set the rule is inserted before the given rule-id or after if the --after option is present.

Command specific options:

• --pap <alias>: add the policy to the pap “alias” (default pap is assumed if this option is missing);

• --action-id <action-id>: specify an action id;

• --rule-id <rule-id>: specify a rule id (requires option --action-id);

• --resource <value>: specify a resource value;

• --action <value>: specify an action value;

• --after: insert the rule after the given rule id;

• --bottom: insert the rule at the bottom of the list of rules of the action.

• --obligation <obligationId>: specify an obligation. (since version 1.2.0)

• --obligation-scope <scope>: Defines in which scope the obligation will be defined. Possible values:
action, resource. If not specified, resource is used as default. (since version 1.2.0)

Command: add-policies-from-file

Add policies (resources or actions) defined in the given file.

usage: pap-admin [global-options] add-policies-from-file [options] <file> [resourceId]

• file: text file containing the policies to add (policies defined with the simplified policy language)

• resourceId: the resource to insert the policies into.

If resourceId is not specified then file must contain resource elements that will be added, by default, at the bottom
(unless option --pivot is specified). Otherwise if resourceId is not specified then file must contain action elements
that will be added, by default, at the bottom inside resourceId (unless option --pivot is specified).

3.4. Argus Policy Administration Point (PAP): Administration 23

Argus Documentation, Release 1.6

Command specific options:

• --pap <alias>: add the policies to the pap “alias” (default pap is assumed if this option is missing);

• --pivot <id>: insert before <id>;

• --after: modifies the behavior of the --pivot option in insert after <id>.

Command: update-policy-from-file

Update a resource/action with a new resource/action defined in a given file.

usage: pap-admin [global-options] update-policy-from-file [options] <id> <file>

• id: id, as listed by the command pap-admin lp --show-all-ids command, of the resource or action
to be updated;

• file: text file containing the new policy definition (using the simplified policy language syntax).

In order to modify an action the file must contain only the new action, for example:

action ".*" {
rule deny { subject="/DC=ch/DC=cern/OU=Organic Units/OU=Users/CN=user/CN=111111/CN=user name" }

}

Command specific options:

• --pap <alias>: update the policies for pap “alias” (default pap is assumed if this option is missing);

Command: remove-policy

Remove policy by id.

usage: pap-admin [global-options] remove-policy [options] id...

• id: id, as listed by the command pap-admin lp --show-all-ids command, of the policy (resource,
action or rule) to remove;

Command specific options:

• --pap <alias>: remove policies of pap “alias” (default pap is assumed if this option is missing);

Command: remove-all-policies

Remove all policies of a pap. Use option --pap to specify a pap different than the default one.

usage: pap-admin [global-options] remove-all-policies [options]

Command specific options:

• --pap <alias>: remove the policies of pap “alias” (default pap is assumed if this option is missing);

Command: move

Move a resource, action or rule before or after another, respectively, resource, action or rule.

usage: pap-admin [global-options] move [options] <id> <pivotId>

24 Chapter 3. Argus: Policy Administration Point (PAP)

Argus Documentation, Release 1.6

• id: id, as listed by the command pap-admin lp --show-all-ids command, of the policy (resource,
action or rule) to move;

• pivotId: id of the pivot policy (id is moved before pivotId)

If id refers to a resource, action or rule then pivotId must be, respectively, a resource, action or rule id.

Command specific options:

• --pap <alias>: move the policy of pap “alias” (default pap is assumed if this option is missing);

• --after: move id after pivotId.

Command: add-obligation (since version 1.2.0)

Adds on obligation to an existing resource or action policy.

usage: pap-admin [global-options] add-obligation <policyId> <obligationId>

• policyId: the id of the policy where the obligation is to be added. In order the get the policyId of existing
policies, run the list-policies command with the --show-all-ids option.

• obligationId: the id of the obligation that will be added.

Command specific options:

• --pap <alias>: add on policies defined in the pap “alias” (default pap is assumed if this option is missing);

Command: remove-obligation (since version 1.2.0)

Removes an obligation from an existing resource or action policy.

usage: pap-admin [global-options] remove-obligation <policyId> <obligationId>

• policyId: the id of the policy where the obligation is to be removed. In order the get the policyId of existing
policies, run the list-policies command with the --show-all-ids option.

• obligationId: the id of the obligation that will be removed.

Command specific options:

• --pap <alias>: add on policies defined in the pap “alias” (default pap is assumed if this option is missing);

3.4.3 PAP Management Commands

This set of commands allows to perform management operations of the PAPs.

Command: ping

Ping a PAP and return version information.

usage: pap-admin [global-options] ping

3.4. Argus Policy Administration Point (PAP): Administration 25

Argus Documentation, Release 1.6

Command: add-pap

Add a remote or local pap.

usage: pap-admin [global-options] add-pap [options] <alias> [<endpoint> <dn>]

• alias: a friendly (unique) name used to identify the pap

• endpoint: endpoint of the remote pap in the form: <verba-
tim>[<protocol>://]<host>:[<port>/[path]]</verbatim>

• dn: DN of the remote pap

A just added pap is disabled by default (its policies are not sent to the PDP), use the command enable-pap to enable it.

By default a pap is considered to be private (use the --public option to set the pap as public). Policies defined in a
public pap can be fetched from other remote PAPs, while this is not allowed when the PAP is set to private.

If endpoint and dn are present the pap is considered to be remote (unless option --local is specified), otherwise
it is local. For the endpoint the only required parameter is the hostname, these are the default values:

• protocol: https

• port: 8150

• service path: pap/services

When a new pap is added, the PAP service tries immediately to fetch its policies. If the remote pap is not reachable,
the pap-admin command prints an error message clarifying that the pap was successfully added, but the fetching of
the policies failed.

If the option --no-policies is given, the policies are not fetched at pap creation time but automatically by the
server every polling interval seconds or manually when the a refresh-cache command is sent to the
server.

Examples of endpoint are:

• test.site.com (hostname);

• test.site.com:9999 (hostname and port);

• test.site.com:9999/service_path (hostname, port, and service path);

• https://test.site.com:9999/service_path (full URL).

Command specific options:

• -l,--local: set the pap as local;

• --remote: set the pap as remote;

• --private: set the pap as private;

• --public: set the pap as public;

• --no-policies: do not fetch the policies now.

Example:

pap-admin add-pap cnaf_pap test.cnaf.infn.it "/C=IT/O=INFN/OU=Host/L=CNAF/CN=test.cnaf.infn.it"

Command: update-pap

Update pap information.

26 Chapter 3. Argus: Policy Administration Point (PAP)

Argus Documentation, Release 1.6

usage: pap-admin [global-options] update-pap [options] <alias> [<endpoint> <dn>]

The input is the same as for the “add-pap” command, the effect is to update old information with the new one. The
alias of a pap cannot be modified. In the case of a remote pap the policies are fetched immediately unless option
--no-policies is given.

Command: remove-pap

Remove a pap and delete its policies.

usage: pap-admin [global-options] remove-pap <alias>

• alias: alias of the pap to remove

Command: list-paps

List all defined paps.

usage: pap-admin [global-options] list-paps [options]

Command specific options:

• -l: use a long list format (displays all the information of a pap).

Command: enable-pap

Set a pap as enabled (i.e. PDPs will get its policies).

usage: pap-admin [global-options] enable-pap <alias>

Command: disable-pap

Set a pap as disabled (i.e. PDPs won’t get its policies).

usage: pap-admin [global-options] disable-pap <alias>

Command: get-paps-order

Get paps ordering.

usage: pap-admin [global-options] get-paps-order

If no ordering is defined the output message is: No ordering has been defined. If the default pap is not
listed in the ordering (like in the no ordering defined case) by default it is placed for first.

Command: set-paps-order

Define paps ordering.

usage: pap-admin [global-options] set-paps-order [alias]...

• alias: a valid pap alias.

3.4. Argus Policy Administration Point (PAP): Administration 27

Argus Documentation, Release 1.6

All the aliases must be valid (existing). If no arguments are given then the current ordering (if there’s any defined) is
deleted.

Example:
The remote pap osct contains banning policies and we want that policies to be evaluated for first. This is
command to issue:

pap-admin set-paps-order osct default

If the PAP service contains other paps beyond the osct, then their policies are evaluated after the osct and default pap
policies. Since the ordering contains only the osct and the default paps it is not guaranteed a special order for the
evaluation of the policies of all the other paps (except that they are evaluated after these two paps).

Command: refresh-cache

Invalidates the local policy cache and retrieves policies from remote paps.

usage: pap-admin [global-options] refresh-cache [alias]...

• alias: a valid pap alias.

The arguments identify the paps that will be contacted. If no arguments are given, all the defined remote paps are
contacted.

Command: get-polling-interval

Get the polling interval in seconds.

usage: pap-admin [global-options] get-polling-interval

Command: set-polling-interval

Invalidates the local policy cache and retrieves policies from remote paps.

usage: pap-admin [global-options] set-polling-interval <seconds>

• seconds: polling interval in seconds.

3.4.4 Authorization Management Commands

This set of commands implement Access Control List (ACL) management for PAP administrators.

Command: list-acl

The list-acl command provides an easy way of knowing the authorization configuration of a running PAP.

Typing:

pap-admin list-acl

28 Chapter 3. Argus: Policy Administration Point (PAP)

Argus Documentation, Release 1.6

prints out the Access Control Entries (ACEs) comprising the ACL currently defined for the running PAP.

Example:

~# pap-admin list-acl

/voms-ws/Role=PAP-Admin :
POLICY_READ_LOCAL|POLICY_READ_REMOTE|POLICY_WRITE|CONFIGURATION_READ|CONFIGURATION_WRITE

"/C=IT/O=INFN/OU=Personal Certificate/L=CNAF/CN=Andrea Ceccanti" :
POLICY_READ_LOCAL|POLICY_READ_REMOTE|POLICY_WRITE|CONFIGURATION_READ|CONFIGURATION_WRITE

ANYONE :
CONFIGURATION_READ|CONFIGURATION_WRITE

Required permissions : CONFIGURATION_READ.

Command: add-ace

The add-ace command allows to add (or change) an ACE to the PAP ACL. Note that if an ACE entry already
exists on the server for the principal specified in the command, the permissions in such ACE are replaced by the ones
specified in the command.

Usage:

pap-admin add-ace <principal> <permissions>

where:

• principal can be either an X509 DN or a VOMS FQAN. ANYONE can be used to assign permissions to any
authenticated user.

• permissions is a | separated list of PAP permissions that will be assigned to principal. The ALL
shortcut can be used to assign all permission.

Example:

pap add-ace '/atlas/Role=VO-Admin' 'ALL'

Required permissions: CONFIGURATION_READ|CONFIGURATION_WRITE

Command: remove-ace

The remove-ace command removes an ACE from the PAP ACL.

Usage:

pap-admin remove-ace <principal>

where:

• principal can be either an X509 DN or a VOMS FQAN. ANYONE can be used to remove permissions
assigned to any authenticated user.

Example:

pap remove-ace '/atlas/Role=VO-Admin'

Required permissions: CONFIGURATION_READ|CONFIGURATION_WRITE

3.4. Argus Policy Administration Point (PAP): Administration 29

Argus Documentation, Release 1.6

3.5 The Simplified Policy Language

As already explained here, Argus policies contain collections of rules that state which actions can be performed on
which resources by which users. XACML, the language used internally by Argus to define policies, provides great
expressiveness and flexibility but it’s very hard to read and author for uman beings. For this reason, Argus provides a
Simplified Policy Language (SPL) to hide the complexity of XACML while providing much of its flexibility.

As an example, the following policy denies access to all the resources (under Argus control) to the members of the
ATLAS VO:

resource ".*" {
action ".*" {

rule deny { vo = "atlas" }
}

}

3.5.1 The SPL syntax

resource <value> {

action <value> {

rule <permit|deny> {

<attributeId>=<attributeValue>
...

}
...

}
...

}
...

The SPL defines three stanza types: resource, action and rule. It’s possible to define multple resouce stanzas
that can contain multiple action stanzas that can contain multiple rules stanzas.

The resource stanza is used to target a resource (or set of resources, if wildcards are used) under the control of
Argus authorization.

The action stanza (always defined in the context of an enclosing resource) is used to target an action (or set
of actions, if wildcards are used) that has to be authorized by Argus on the resource identified by the enclosing
resource stanza.

The rule stanza defines who is authorized (in case of a permit rule) or not authorized (in case of a deny rule) to
perform the action on the resource identified by the enclosing action and resource stanzas.

3.5.2 Identifying actions and resources

Actions and resources are identified by unique identifiers that are assigned to them. This identifiers are usually URIs,
but any string that is unique in your deployment may work.

You can also use wildcards in your SPL policies to target group of resources or actions, like in the following example:

resource "http://cnaf.infn.it/cream-ce-01" {

action ".*" {

30 Chapter 3. Argus: Policy Administration Point (PAP)

https://twiki.cern.ch/twiki/bin/view/EGEE/AuthZIntro

Argus Documentation, Release 1.6

rule permit { vo = "cms" }

}
}

This policy authorizes users from the CMS vo to perform any action on the resource
http://cnaf.infn.it/cream-ce-01.

3.5.3 Identifying subjects

In Argus policies, the users (or software agents) that need to be authorized to execute an action on a specific resource
are identified using a set of attributes, like:

• the subject of the user’s X509 certificate;

• the CA that issued the user’s x509 certificate;

• the VO the user belongs to;

• whether the use has a specific FQAN in its bag of VOMS attributes;

• whether the user has a specific FQAN as his primary FQAN.

The table below specifies the supported attributes for Argus 1.1:

Attribute
name

Description Example

subject The user’s X509 certificate subject in
rfc2253 or openssl format

<verbatim>subject =”CN=Andrea
Ceccanti,L=CNAF,OU=Personal
Certificate,O=INFN,C=IT”</verbatim>

subject-issuerThe subject (in rfc2254 or openssl format)
of the CA that issued the user’s x509
certificate

<verbatim>subject-issuer = “CN=INFN
CA,O=INFN,C=IT”</verbatim>

vo The name of the VO the user belongs to <verbatim>vo = “atlas”</verbatim>
fqan The fqan present in the user’s bag of VOMS

attributes
<verbatim>fqan=”/dteam/Role=VO-
Admin”</verbatim>

pfqan The user primary fqan <verbatim>pfqan=”/atlas/Role=pilot”</verbatim>

3.5.4 The contents of the rule stanza

As already pointed out, the rule stanza defines who is authorized to perform a specific action on a specific resource.
A subject can be identified using the attributes defined in the previous section.

resource "http://cnaf.infn.it/cream-ce-01" {

action "submit-pilot-job" {

rule permit { pfqan="/atlas/Role=pilot" }

}
}

In the above policy, only subjects that have the /atlas/Role=pilot fqan as their primary fqan are
authorized (since the rule is permit rule) to perform the action submit-pilot-job on the resource
http://cnaf.infn.it/cream-ce-01. To prevent users from LHCB VO the execution of the same action,
one would write the following policy:

3.5. The Simplified Policy Language 31

Argus Documentation, Release 1.6

resource "http://cnaf.infn.it/cream-ce-01" {

action "submit-pilot-job" {

rule deny { vo = "lhcb" }

}
}

Multiple attributes inside the rule stanza

It is possibile to define multiple attributes inside a rule stanza. All the attributes defined in the rule stanza need to
match with the subject attributes present in the authorization request for the rule to be applied. This can be explained
more clearly using an example:

resource "http://cnaf.infn.it/cream-ce-01" {

action "submit-job" {

rule permit {
vo = "cms"
subject-issuer = "CN=INFN CA,O=INFN,C=IT"

}
}

}

The meaning of the above policy is that only members from the VO CMS that have a certificate signed by
the CN=INFN CA,O=INFN,C=IT CA will be authorized to perform the action submit-job on resource
http://cnaf.infn.it/cream-ce-01. CMS members with certificates signed by the CERN CA, for instance,
will not be authorized.

Since all the attributes defined in a rule must be “matched” in the request for the rule to be applied, one can think about
multiple attributes inside a rule stanza as conditions that are ANDed to select who will be authorized to perform the
action the rule is about.

3.5.5 How policies are evaluated

The first applicable policy (and only that one) that matches the authorization request is the one that is applied by Argus.
This means that order matters. An example will help in understanding this concept.

Suppose we want to grant access to our CE to all members of VO CMS but not those that have /cms/Role=pilot
as their primary FQAN. We would write a policy like this:

resource "http://cnaf.infn.it/cream-ce-01" {

action ".*" {

rule deny{ pfqan = "/cms/Role=pilot"}
rule permit { vo = "cms" }

}
}

Since the deny rule precedes the permit rule in the above policy, we are able to deny access only to CMS users with the
pilot role, but grant access to other members of CMS. This is due to the fact that the first deny rule will not match to

32 Chapter 3. Argus: Policy Administration Point (PAP)

Argus Documentation, Release 1.6

CMS users that do not have the pilot role, so the following permit rule will be applied. On the contrary, if we reversed
the order of the two rules like in the following policy:

resource "http://cnaf.infn.it/cream-ce-01" {

action ".*" {

rule permit { vo = "cms" }
rule deny{ pfqan = "/cms/Role=pilot" }

}
}

the deny rule would be useless, since the permit rule that precedes it would always match any CMS member.

3.5.6 The obligation stanza

Starting with Argus version 1.1, the SPL supports obligation stanzas. The syntax of the obligation stanza is as
follows:

obligation "obligationId" {
[attributeId = attributeValue]*

}

Oligation stanzas can be placed either in the resource or action context and are used to define a set operations that
must be performed by the Argus PEP in conjuction with an authorization decision. An obligation stanza can define
0..N attribute definitions, that are passed as parameters to the PEP for the fulfillment of the obligation.

An example of policy with an obligation is the following:

resource "http://cnaf.infn.it/wn"{

obligation "http://glite.org/xacml/obligation/local-environment-map" {}

action "http://glite.org/xacml/action/execute"{
rule permit { vo = "dteam" }

}
}

The Argus PEP currently supports only the map-to-local-enviroment obligation.

The map-to-local-environment obligation

The map-to-local-environment obligation, identified by the following id:

http://glite.org/xacml/obligation/local-environment-map

is used within a policy to signify that a mapping to a local posix account will be produced by the Argus server as a
result of a permit policy.

The use of this obligation is mandatory for the policies that authorize the execution and mapping of pilot jobs on the
worker node.

3.5. The Simplified Policy Language 33

Argus Documentation, Release 1.6

3.5.7 Examples

Ban policies

Ban policies are used to deny a subject on all possible resources. For this reason ban policies need to be placed at the
top and defined for any action on all the resources.

resource ".*" {
action ".*" {

rule deny { subject = "CN=Alberto Forti,L=CNAF,OU=Personal Certificate,O=INFN,C=IT" }
rule deny { fqan = /dteam/test }

}
}

Glexec on the WN policies

Policy that authorize execution and mapping of pilot jobs on the WN need to specify the
map-to-local-environment obligation to produce a mapping that gLexec can use to do the user switch. An
example of such policy is the following:

resource "http://cnaf.infn.it/wn"{

obligation "http://glite.org/xacml/obligation/local-environment-map" {}

action "http://glite.org/xacml/action/execute"{
rule permit { vo = "dteam" }
rule permit { pfqan = "/atlas/Role=pilot" }
rule permit { pfqan = "/ops/Role=pilot" }

}
}

The above policy authorizes the execution of jobs on the WN by:

• people from the dteam VO,

• people that have /atlas/Role=pilot as the primary fqan

• people that have /ops/Role=pilot as the primary fqan

3.6 Argus: Policy Administration Point (PAP): Kown Issues

There is no know issues.

34 Chapter 3. Argus: Policy Administration Point (PAP)

CHAPTER 4

Argus: Policy Decision Point (PDP)

The Policy Decision Point (PDP) is a policy evaluation engine.

The PDP receives authorization requests from Policy Enforcement Points and evaluates these requests against autho-
rization policies retrieved from the PAP.

4.1 Argus Policy Decision Point (PDP) Installation

To deploy the Argus PDP for EMI, Please follow the documentation Argus Deployment for EMI.

4.2 Argus Policy Decision Point (PDP): Configuration

4.2.1 Configuration File Syntax

The PDP is configured through the use of the pdp.ini file. This file is a standard INI file with three defined sections.
The SERVICE section contains properties related the PDP service as a whole and how it listens for incoming requests.
The POLICY section contains properties for the retrieval of policies from the Policy Administration Point (PAP). The
final section, SECURITY, contains properties that related to various security aspects of the service, the services private
key and certificate, for example.

35

Argus Documentation, Release 1.6

4.2.2 Basic Configuration Options

SERVICE section

Prop-
erty

Description Re-
quired?

Default Value

enti-
tyID

This is a unique identifier for the PDP. It must be a URI
(URL or URN) and the same entity ID should be used
for all PDP instances that make up a single logical PDP.
If a URL is used it need not resolve to any specific
webpage.

Y None. Recommended value is a URL
corresponding to the logical PDP
service (e.g.
http://pdp.example.org).

host-
name

This is the hostname or IP address to which the service
will bind.

Y None.

port This is the port to which the service will bind. N 8152
ad-
min-
Host

The hostname upon which the service will listen for
admin commands.

N 127.0.0.1

ad-
min-
Port

This is the port upon which the service will listen for
admin command.

N 8153

ad-
min-
Pass-
word

This is the password required to accompany admin
commands. If unspecified than no password is required
to run admin commands.

N None

POLICY section

Prop-
erty

Description Re-
quired?

De-
fault
Value

paps A space separated list of PAP endpoint URLs. Endpoints will be tried in turn until
one returns a successful response. This provides limited failover support. If more
intelligent failover is necessary or load balancing is required, a dedicated
load-balancer/failover appliance should be used.

Y None

reten-
tionIn-
terval

The number of minutes the PDP will retain (cache) a policy retrieved from the PAP.
After this time is passed the PDP will again call out to the PAP and retrieve the
policy.

N 240 (4
hours)

36 Chapter 4. Argus: Policy Decision Point (PDP)

Argus Documentation, Release 1.6

SECURITY section

Property Description Re-
quired

De-
fault
Value

servicePri-
vateKey

An absolute path to the file containing the unencrypted, PEM-encoded,
private key used by this service. All PDPs instances within a single logical
PDP should use the same key

Yes None

serviceCertifi-
cate

An absolute path to the file containing the unencrypted, PEM-encoded,
certifcate used by this service. All PDPs instances within a single logical PDP
should use the same key

Yes None

trustInfoDir An absolute path to the directory that contains standard X.509 trust
information, such as the IGTF Trust Anchor Distribution

Yes None

enableSSL Indicates whether the service port should use SSL/TLS or not No false
require-
ClientCertAu-
thentication

Indicates whether the client must use a valid client certificate to authenticate
to the PDP

No false

Example pdp.ini files

The following example file contain the bare minimum required for a valid PDP configuration file.

[SERVER]
entityID = http://argus.example.org/pdp
hostname = argus.example.org

[POLICY]
paps = https://argus.example.org:8150/pap/services/ProvisioningService

[SECURITY]
servicePrivateKey = /etc/grid-security/hostkey.pem
serviceCertificate = /etc/grid-security/hostcert.pem
trustInfoDir = /etc/grid-security/certificates
HTTPS enabled
enableSSL = true

4.2.3 Advanced Configuration Options

The following advanced options are available but are unlikely to ever be used by deployers. They are mostly for
performing very fine-grained tuning of request/response handling parameters. Incorrectly configuring these can have
a very negative impact on performance so deployers should not change these unless they are very sure they understand
what the impact will be.

4.2. Argus Policy Decision Point (PDP): Configuration 37

Argus Documentation, Release 1.6

SERVICE section

Prop-
erty

Description Re-
quired?

De-
fault
Value

maxi-
mumRe-
quests

The maximum number of requests that will be processed simultaneously.
Additional requests will be queued.

N 200

re-
questQueue-
Size

The maximum number of requests that will be queued up when all the processing
threads are busy. Incoming requests received when all processing threads are busy
and the queue is full will receive an HTTP 503 error.

N 500

connec-
tion-
Timeout

This is the length of time, in seconds, the service will wait for the client to send
information before it considers the request timed out.

N 30 sec-
onds

receive-
Buffer-
Size

This is the size, in bytes, that will be allocated to the HTTP request buffer. N 16384
(16kb)

send-
Buffer-
Size

This is the size, in bytes, that will be allocated to the HTTP response buffer. N 16384
(16kb)

POLICY section

Property Description Re-
quired

Default
Value

policy-
SetId

The ID of the policy to fetch from the PAP No -1

connec-
tionTime-
out

This is the length of time, in seconds, the PAP client will wait for the PAP to
send information before it considers the request timed out

None 30

receive-
BufferSize

This is the size, in bytes, that will be allocated to the PAP client send buffer No 16384
(16KB)

send-
BufferSize

This is the size, in bytes, that will be allocated to the PAP client request buffer No 16384
(16KB)

SECURITY section

Property Description Re-
quired?

Default
Value

trustInfoRe-
fresh

The frequency, in minutes, that the trust material specified by
trustInfoDir will be checked for updates.

N 60 (1
hour)

messageValid-
ityPeriod

The number of seconds, from the time a message is issued, until it is
considered expired.

N 300s (5
minutes)

clockSkew The allowance, in seconds, used when computing validity periods. N 30s

38 Chapter 4. Argus: Policy Decision Point (PDP)

Argus Documentation, Release 1.6

4.3 Argus Policy Decision Point (PDP): Operation

4.3.1 Service Operation Commands

EMI - Argus 1.3

/etc/init.d/argus-pdp start Start the PDP service

/etc/init.d/argus-pdp stop Stop the PDP service

/etc/init.d/argus-pdp restart Restart the PDP service

/etc/init.d/argus-pdp status Provides PDP service status information

/etc/init.d/argus-pdp reloadpolicy Causes the currently cached copy of the policies received from
the PAP can be flushed from memory, and retrieved anew from the PAP

gLite 3.2 - Argus 1.2

$PDP_HOME/sbin/pdpctl.sh start starts the service

$PDP_HOME/sbin/pdpctl.sh stop stops the services

$PDP_HOME/sbin/pdpctl.sh status provides service status data

$PDP_HOME/sbin/pdpctl.sh reloadPolicy causes the currently cached copy of the policy received from
the PAP can be flushed from memory, and retrieved anew from the PAP

4.3.2 Service Information

Service Ports

• Default Service Port: 8152

• Default Admin Port: 8153

The PDP service only requires the standard service port to be open to those PEPd services which will communicate
with the PDP. The PDP must also be able to make outbound connections to those PAPs from which remote policies
will be retrieved.

Service Endpoint URLs

This service contains the following endpoint URLs:

• https://HOSTNAME:8152/authz - This endpoint is the recipient of authorization requests.

• http://127.0.0.1:8153/status - This endpoint provides current status information on the PDP. This
endpoint is password protected.

• http://127.0.0.1:8153/reloadPolicy - This endpoint instructs the PDP to flush, and retrieve anew,
its policy from the PAP. This endpoint is password protected.

• http://127.0.0.1:8153/shutdown - This endpoint instructs the PDP to shutdown. This endpoint is
password protected.

Note: Admin services may be password protected and thus not invokable without this password.

4.3. Argus Policy Decision Point (PDP): Operation 39

Argus Documentation, Release 1.6

4.3.3 Logging and Logs

This service uses the logback logging library. Java developers are probably familiar with Apache Log4J, logback is
written by the developer who initially wrote Log4J and contains a cleaner API and is much more performant. The
configuration file for the logging system can be found in $PDP_HOME/conf/logging.xml and changes to this
file are picked up every 5 minutes.

Enable Debug Logging

To enable debug logging follow: 1 Locate the line that contains logger name="org.glite.authz" (line 10
in the default logging config) 1 On the following line, change INFO to DEBUG

In some cases it may be helpful to see the policy being evaluated for each request. To do this: 1 Locate the line that
contains org.glite.authz.message.policy (line 22 in the default logging config) 1 On the following line,
change INFO to DEBUG

In some cases it may be helpful to see the incoming and outgoing messages. To do this: 1 Locate the line that contains
org.glite.authz.message.protocol (line 27 in the default logging config) 1 On the following line, change
INFO to DEBUG

NOTE always change your logging levels back to their original values once you are done debugging a problem.
Keeping the system on the debug logging level could fill up your disk partition in a short time.

Service Logs

The service writes three different logs, located in /var/log/argus/pdp (EMI) or $PDP_HOME/logs (gLite):

• process.log - This log file contains the normal, human-oriented logging messages that the system generates
while in operation. This can be thought of as the debug log (though that’s really only true if configured to log
debug messages).

• access.log - This file is an Apache-style access log showing information about incoming requests. This log is
meant to be machine parsed. Each line contains the following ‘|’ (pipe) delimited fields:

– request time - time of the request, in the UTC timezone, from the Unix epoch (Jan 1, 1970, 00:00:00 UTC)

– remote host - the hostname or IP address of the host that contacted the PDP

– server host - the hostname or IP address on which the server received the request

– server port - the port on which the server received the request

– request path - the URL path that was requested

• audit.log - This file contains information useful for auditing the system (e.g. results of authorization requests).
This log is meant to be machine parsed. Each line contains the following ‘|’ (pipe) delimited fields:

– request time - time of the request, in the UTC timezone, from the Unix epoch (Jan 1, 1970, 00:00:00 UTC)

– requester ID - the entity ID of the PEP that made the request

– request ID - the ID of the incoming authorization request

– policy ID - the ID of the policy set that was evaluated in order to reach the authorization decision

– policy version - the version of the policy that was evaluated in order to reach the authorization decision

– policy decision - the authorization decision that was reached

– response ID - the ID of the authorization response sent back to the PEP

40 Chapter 4. Argus: Policy Decision Point (PDP)

http://logback.qos.ch/

Argus Documentation, Release 1.6

4.4 Argus: Policy Decision Point (PDP): Troubleshooting

4.4.1 PDP Uses “Old” Policies

The PDP caches policies received from the PAP in order to avoid the cost of fetching and parsing them for every
request. In cases where you know, or suspect, the policy used by the PDP is no longer in synch with the policy stored
at the PAP you may use the pdpctl reloadPolicy command to force the PDP to flush its policy cache and
retrieve the latest policy from the PAP.

4.4.2 Private Key File Access

Many systems protect their private keys so that only super-user accounts can read them. Starting, and running the PDP,
as such an account is strongly discouraged. The recommend approach is to create a special group (e.g. ‘hostkey’) that
has read permissions to the key and ensure the user running the PDP service is also in this group. This group should
not have write permission to the key.

Some people might view this as a loss of security, because, if the service user account were compromised the attacker
would be able to read the private key. However, the service holds a copy of key in memory once it starts and this copy
can easily be accessed via tools that come with the JRE.

4.4. Argus: Policy Decision Point (PDP): Troubleshooting 41

Argus Documentation, Release 1.6

42 Chapter 4. Argus: Policy Decision Point (PDP)

CHAPTER 5

Argus: Policy Enforcement Point Daemon (PEP)

In the Argus authorization framework the Policy Enforcement Point is implemented as a client-server architecture.
The PEP Daemon is the server component and there are different lightweight PEP clients available: C client, Java
client, GSI PEP Callout client, ...

5.1 Argus PEP Server Installation

5.1.1 EMI Installation

To deploy the Argus PEP Server for EMI, Please follow the documentation Argus Deployment for EMI

5.2 Argus PEP Server: Configuration

5.2.1 Configuration File

The PEP is configured through the user of the pepd.ini file. This file is a standard INI file with different defined
sections. The SERVICE section contains properties related the PEP Server service as a whole and how it listens for
incoming requests. The PDP section that control how callouts to the PDP are made. The final section, SECURITY,
contains properties that related to various security aspects of the service, the services private key and certificate, for
example.

PIP Configuration

Each Policy Information Point (PIP) is configured in its own INI section, referenced in the SERVICE section under
the pips property.

The configuration properties needed by each PIP is specific to that given PIP. Some will not require any properties
beyond the standard set while other will need addition information.

• See the Policy Information Point documentation for more information:

– Request Validator PIP

– OpenSSL Subject Converter PIP

– gLite Grid Authorization Profile PIP

– Common XACML Authorization Profile PIP

43

Argus Documentation, Release 1.6

Obligation Handler Configuration

Each Obligation Handler (OH) is configured in its own INI section, referenced in the SERVICE section under the
obligationHandlers property.

The configuration properties needed by each Obligation Handler is specific to that given OH. Some will not require
any properties beyond the standard set while other will need addition information.

See the Obligation Handler documentation for more information, in particular the Gridmap Account Mapping Obli-
gation Handler.

5.2.2 Basic Configuration Options

SERVICE section

Prop-
erty

Description Re-
quired?

Default Value

enti-
tyID

This is a unique identifier for the PEP. It must be a URI
(URL or URN) and the same entity ID should be used
for all PEP instances that make up a single logical PEP.
If a URL is used it need not resolve to any specific
webpage.

Y None. Recommended value is a URL
corresponding to the logical PEP
service (e.g.
http://pep.example.org).

host-
name

This is the hostname or IP address to which the service
will bind.

Y None

port This is the port to which the service will bind. N 8154
ad-
min-
Host

The hostname upon which the service will listen for
admin commands.

N 127.0.0.1

ad-
min-
Port

This is the port upon which the service will listen for
admin commands. This port is only available on the
localhost (127.0.0.1).

N 8155

ad-
min-
Pass-
word

This is the password required to accompany admin
commands. If unspecified than no password is required
to run admin commands.

N None

pips This is a space separated list of the INI section names
that configure policy information points (PIP) that the
PEP will invoke upon the arrival of every request. PIPs
are executed in the order listed by this property. See the
policy information point :ref:<argus_pep_pip>
documentation for more information.

N None

obli-
ga-
tion-
Han-
dlers

This is a space separated list of the INI section names
that configure obligations handlers that the PEP will
use to fulfill obligation requirements sent back by the
PDP. See the obligation handler documentation for
more information.

N None

44 Chapter 5. Argus: Policy Enforcement Point Daemon (PEP)

Argus Documentation, Release 1.6

PDP section

Property Description Re-
quired?

De-
fault
Value

pdps A space separated list of PDP endpoint URLs. Endpoints will be tried in turn
until one returns a successful response. This provides limited failover support.
If more intelligent failover is necessary or load balancing is required, a
dedicated load-balancer/failover appliance should be used.

Y None

maximum-
CachedResponses

The maximum number of responses from any PDP that will be cached. Setting
this value to 0 (zero) will disable caching. The maximum amount of time a
single response is cached is controlled by the cachedResponseTTL
property described below.

N 500

SECURITY section

Property Description Required? De-
fault
Value

servicePri-
vateKey

An absolute path to the file containing the unencrypted,
PEM-encoded, private key used by this service.

Yes, if requests from
the PEP client should
be done over HTTPS.

None.

serviceCer-
tificate

An absolute path to the file containing the unencrypted,
PEM-encoded, certificate used by this service.

Yes, if requests from
the PEP client should
be done over HTTPS.

None.

trustInfoDir An absolute path to the directory that contains standard X.509
trust information, such as the IGTF Trust Anchor Distribution.

Required when
connecting to PDPs
over HTTPS.

None

enableSSL Enable HTTPS on the service port (SSL/TLS). The
serviceCertificate, servicePrivateKey, and
trustInfoDir properties must also be defined in order to
use this setting.

N false

require-
ClientCer-
tAuthenti-
cation

The client must have a valid X.509 client certificate to
authenticate to the PEP Server

N true

Example pepd.ini files

The following example file contain the bare minimum required for a valid PEP configuration file.

[SERVICE]
entityId = https://argus.example.org/pep
hostname = argus.example.org

[PDP]
pdps = https://argus.example.org:8152/authz

[SECURITY]

The following example file contains the bare minimum required for a valid PEP configuration plus the configuration
of a couple PIPs. Note how each element in the list pips list of the SERVER section matches the name section
configuring the PIP. Also note that the REQVALIDATOR_PIP takes a few additional configuration parameters.

5.2. Argus PEP Server: Configuration 45

Argus Documentation, Release 1.6

[SERVICE]
entityID = http://argus.example.org/pep
hostname = argus.example.org
pips = REQVALIDATOR_PIP

[PDP]
pdps = https://argus.example.org:8152/authz https://pdp2.example.org:8152/authz

[SECURITY]
servicePrivateKey = /etc/grid-security/hostkey.pem
serviceCertificate = /etc/grid-security/hostcert.pem
trustInfoDir = /etc/grid-security/certificates
enableSSL = true
requireClientCertAuthentication = true

[REQVALIDATOR_PIP]
parserClass = org.glite.authz.pep.pip.provider.RequestValidatorPIPIniConfigurationParser
validateRequestSubjects = true
validateRequestResources = true
validateRequestAction = true
validateRequestEnvironment = false

5.2.3 Advanced Configuration Options

The following advanced options are available but are unlikely to ever be used by deployers. They are mostly for
performing very fine-grained tuning of request/response handling parameters. Incorrectly configuring these can have
a very negative impact on performance so deployers should not change these unless they are very sure they understand
what the impact will be.

SERVICE section

Prop-
erty

Description Re-
quired?

De-
fault
Value

maxi-
mumRe-
quests

The maximum number of requests that will be processed simultaneously.
Additional requests will be queued.

N 200

re-
questQueue-
Size

The maximum number of requests that will be queued up when all the processing
threads are busy. Incoming requests received when all processing threads are busy
and the queue is full will receive an HTTP 503 error.

N 500

connec-
tion-
Timeout

This is the length of time, in seconds, the service will wait for the client to send
information before it considers the request timed out.

N 30 sec-
onds

receive-
Buffer-
Size

This is the size, in bytes, that will be allocated to the HTTP request buffer. N 16384
(16kb)

send-
Buffer-
Size

This is the size, in bytes, that will be allocated to the HTTP response buffer. N 16384
(16kb)

46 Chapter 5. Argus: Policy Enforcement Point Daemon (PEP)

Argus Documentation, Release 1.6

PDP section

Property Description Re-
quired

Default
Value

maximum-
Requests

The maximum number of simultaneous requests that will be made to the PDP.
Additional requests will wait until a free request slot becomes available

No 200

cachedRespon-
seTTL

The length of time, in seconds, for which a response will be cached No 600 (10
minutes)

connec-
tionTime-
out

This is the length of time, in seconds, the PDP client will wait for the PDP to
send information before it considers the request timed out

No 30

receive-
BufferSize

This is the size, in bytes, that will be allocated to the PDP client send buffer None 16384
(16 KB)

send-
BufferSize

This is the size, in bytes, that will be allocated to the PDP client request buffer None 16384
(16 KB)

SECURITY section

Property Description Re-
quired?

Default
Value

trustIn-
foRefresh

The frequency, in minutes, that the trust material specified by
trustInfoDir will be checked for updates.

N 60 (1
hour)

5.3 Argus PEP Server: Operation

5.3.1 EMI

For EMI Argus (v1.6) , see the Argus Service Reference Card

5.3.2 Starting & Stopping the Service

$PEPD_HOME/sbin/pdpctl.sh start starts the service

$PEPD_HOME/sbin/pdpctl.sh stop stops the services

$PEPD_HOME/sbin/pdpctl.sh status provides service status data

$PEPD_HOME/sbin/pepdctl.sh clearResponseCache causes the currently cached responses from the
PDP can be flushed from memory

5.3.3 Service Information

Service Ports

• Default Service Port: 8154

• Default Admin Port: 8155

The PEP service only requires the standard service port to be open to those PEP clients which will communicate with
the PEP. The PEP must also be able to make outbound connections to those PDPs to which is will make policy decision
requests.

5.3. Argus PEP Server: Operation 47

https://twiki.cern.ch/twiki/bin/view/EMI/ArgusSRC

Argus Documentation, Release 1.6

Service Endpoints

This service contains the following endpoint URLs:

• https://argus.example.org:8154/authz - This endpoint is the recipient of authorization requests
and is reachable on the standard service host and port.

• http://127.0.0.1:8155/status - This endpoint provides current status information on the PEP dae-
mon and is reachable on the standard admin host and port.

• http://127.0.0.1:8155/clearResponseCache - This endpoint instructs the PEP daemon to flush
its PDP response cache. It is reachable on the standard admin host and port.

• http://127.0.0.1:8155/shutdown - This endpoint instructs the PEP daemon to shutdown and is
reachable on the standard admin host and port.

Note: Admin services may be password protected and thus not invokable without this password.

5.3.4 Logging and Logs

This service uses the logback logging library. Java developers are probably familiar with Apache Log4J, logback is
written by the developer who initially wrote Log4J and contains a cleaner API and is much more performant. The
configuration file for the logging system can be found in $PEP_HOME/conf/logging.xml and changes to this
file are picked up every 5 minutes.

Enable Debug Logging

To enable debug logging follow: 1 Locate the line that contains logger name="org.glite.authz" (line 10
in the default logging config) 1 On the following line, change INFO to DEBUG

In some cases it may be helpful to see the incoming and outgoing messages. To do this: 1 Locate the line that contains
org.glite.authz.message.protocol (line 15 in the default logging config) 1 On the following line, change
INFO to DEBUG

NOTE always change your logging levels back to their original values once you are done debugging a problem.
Keeping the system on the debug logging level could fill up your disk partition in a short time.

Service Logs

The service writes three different logs, located in $PEPD_HOME/logs:

• process.log - This log file contains the normal, human-oriented logging messages that the system generates
while in operation. This can be thought of as the debug log (though that’s really only true if configured to log
debug messages).

• access.log - This file is an Apache-style access log showing information about incoming requests. This log is
meant to be machine parsed. Each line contains the following ‘|’ (pipe) delimited fields:

– request time - time of the request, in the UTC timezone, from the Unix epoch (Jan 1, 1970, 00:00:00 UTC)

– remote host - the hostname or IP address of the host that contacted the PDP

– server host - the hostname or IP address on which the server received the request

– server port - the port on which the server received the request

– request path - the URL path that was requested

48 Chapter 5. Argus: Policy Enforcement Point Daemon (PEP)

http://logback.qos.ch/

Argus Documentation, Release 1.6

• audit.log - This file contains information useful for auditing the system (e.g. results of authorization requests).
This log is meant to be machine parsed. Each line contains the following ‘|’ (pipe) delimited fields:

– request time - time of the request, in the UTC timezone, from the Unix epoch (Jan 1, 1970, 00:00:00 UTC)

– request ID - the ID of the authorization request

– responder ID - the URL of the PDP that responded to the authorization request

– response ID - the ID of the response message sent back from the PDP

– policy decision - the authorization decision that was reached

5.4 Argus PEP Server: Troubleshooting

5.4.1 PEP Daemon Returns “Stale” Results

The PEPd keeps a short (10 minutes by default) response cache. So identical requests made within a short time period
will always provide the same answer. If you’re testing this can be a pain. You can clear the cache using the pepdctl
clearResponseCache command. You can also turn of the cache through the maximumCachedResponses
documented in the PEPd configuration. Just be sure to enable it again before you put the system under heavy load.

Note that the PDP also caches the policies it reads, so during testing you may also want to configure the PDP to more
quickly pick up policies from the PAP via the retentionInterval option.

5.4.2 Testing a policy without submitting a job

When authoring new policies or troubleshooting an existing policies it can be helpful to mock up requests, instead
of getting users to perform the request over and over as you diagnose the problem. The PEPd offers a C and Java
command line tool. The C tool is useful for specifically testing cases where policies are based on the resource ID,
action ID, subject ID, and FQAN attributes. The Java tool allows you to mock up any request.

Here is an example of using the C command line tool to test a job submission. It specifies the PEPd service, resource
ID, action ID, user’s DN, and primary FQAN.

/opt/glite/bin/pepcli -v -x \
-p http://vesta.switch.ch:8154/authz \
-r http://authz-interop.org/xacml/resource/resource-type/wn \
-a http://authz-interop.org/xacml/action/action-type/execute-now \
-s "CN=Alessandro Usai,O=SWITCH,C=CH,DC=users,DC=switch,DC=grid,DC=quovadisglobal,DC=com" \
-f /dech \

5.5 Argus PEP Server Policy Information Points (PIP)

Policy Information Points (PIPs) are plugins to the authorization service that help populate and/or complete an autho-
rization request. PIPs may rely on information already within the request or they may simply be able to self generate
the data that they will add.

5.5.1 Request Validator PIP

NOTE: This PIP is new in Argus 1.3 (EMI).

5.4. Argus PEP Server: Troubleshooting 49

Argus Documentation, Release 1.6

The Request Validator PIP validates the incoming authorization request. It checks that the incoming authorization
request contains at least one subject, one resource and one action, and that the attributes within them have at least one
value, which is not null or an empty string.

Configuration

1. Create a new INI section for you PIP (you may choose any valid INI section name. e.g. REQVALIDATOR_PIP)

2. Into the PIP INI section add the parserClass property with the value
org.glite.authz.pep.pip.provider.RequestValidatorPIPIniConfigurationParser

3. Configure how the authorization request must be validated

PIP Configuration Properties

Property Description Re-
quired?

Default
Value

validateRequestSubjects Require at least one subject with non-empty attribute
values

N true

validateRequestRe-
sources

Require at least one resource with non-empty attribute
values

N true

validateRequestAction Require one action with non-empty attribute values N true
validateRequestEnviron-
ment

Require one environment with non-empty attribute
values

N false

Example Configuration

The following example shows a PEP server configuration with the request validator PIP enabled. The PIP validates
the incoming authorization request and checks that it contains at least one subject, at least one resource and one action,
all with non-empty or null attributes values.

[SERVICE]
entityId = https://example.org/pep
hostname = example.org
pips = REQVALIDATOR_PIP

[PDP]
pdps = http://localhost:8152/authz

[SECURITY]
trustInfoDir = /etc/grid-security/certificates

[REQVALIDATOR_PIP]
parserClass = org.glite.authz.pep.pip.provider.RequestValidatorPIPIniConfigurationParser
validateRequestSubjects = true
validateRequestResources = true
validateRequestAction = true
validateRequestEnvironment = false

5.5.2 OpenSSL Subject Converter PIP

NOTE: This PIP is new in Argus 1.3 (EMI).

50 Chapter 5. Argus: Policy Enforcement Point Daemon (PEP)

Argus Documentation, Release 1.6

The OpenSSL Subject Converter PIP transforms on-the-fly an incoming request subject attribute subject-
id and/or attribute subject-issuer value from the old, unsupported and wrong OpenSSL oneline format
(e.g. “/C=CH/O=example.org/CN=John Doe”) into a correct RFC2253 format value (e.g. “CN=John
Doe,O=example.org,C=CH”) with the correct datatype.

Configuration

1. Create a new INI section for you PIP (you may choose any valid INI section name. e.g. OPENSSLSUB-
JECT_PIP)

2. Into the PIP INI section add the parserClass property with the value
org.glite.authz.pep.pip.provider.OpenSSLSubjectPIPIniConfigurationParser

3. Configure which subject attribute ID and datatype values must be transformed from the OpenSSL format into
the RFC2253 format.

PIP Configuration Properties

Property Description Re-
quired?

Default Value

opensslSub-
jectAt-
tributeIDs

The space separated list of subject
attribute IDs containing an
OpenSSL value to convert

No urn:oasis:names:tc:xacml:1.0:subject:subject-id
http://glite.org/xacml/attribute/subject-issuer

opensslSub-
jectAt-
tribute-
Datatypes

The space separated list of subject
attribute datatypes containing an
OpenSSL value to convert

No http://www.w3.org/2001/XMLSchema#string

Example Configuration

The following example shows a PEP server configuration with the OpenSSL Subject Converter PIP enabled, and
transforming both the subject attribute IDs urn:oasis:names:tc:xacml:1.0:subject:subject-id
and http://glite.org/xacml/attribute/subject-issuer, with the datatype
http://www.w3.org/2001/XMLSchema#string values from the OpenSSL oneline format into the
RFC2253 format.

[SERVICE]
entityId = https://example.org/pep
hostname = example.org
pips = OPENSSLSUBJECT_PIP

[PDP]
pdps = http://localhost:8152/authz

[SECURITY]
trustInfoDir = /etc/grid-security/certificates

[OPENSSLSUBJECT_PIP]
parserClass = org.glite.authz.pep.pip.provider.OpenSSLSubjectPIPIniConfigurationParser
opensslSubjectAttributeIDs = http://glite.org/xacml/attribute/subject-issuer urn:oasis:names:tc:xacml:1.0:subject:subject-id
opensslSubjectAttributeDatatypes = http://www.w3.org/2001/XMLSchema#string

5.5. Argus PEP Server Policy Information Points (PIP) 51

Argus Documentation, Release 1.6

5.5.3 Grid Authorization Profile PIP

NOTE: This is the default profile supported starting from Argus 1.2.

This PIP allows the PEP client to send only the end-user certificate or proxy as lone Subject Key-Info attribute. It
will then parse the certificate, extract all the information from the certificate required by the gLite Grid XACML
Authorization Profiles, and populate the request with attributes found in the certificate/proxy.

This PIP implements the XACML Grid Worker Node Authorization Profile (v.1.0) and the XACML Grid Computing
Element Authorization Profile (v.1.0) specifications.

Configuration

1. Create a new INI section for you PIP (you may choose any valid INI section name. e.g. GLITEXACMLPRO-
FILE_PIP)

2. Into the PIP INI section add the parserClass property with the value
org.glite.authz.pep.pip.provider.GLiteAuthorizationProfilePIPIniConfigurationParser

3. To enable VOMS attribute certificate support add the vomsInfoDir property with a value corresponding to
the absolute path of the VOMS vomsdir, traditionally /etc/grid-security/vomsdir.

4. If, in the SECURITY section, the trustInfoDir property is not already set, add it with a value of the absolute
filesystem path of your IGTF trust bundle.

5. Configure which profile IDs are to be accepted.

PIP Configuration Properties

Property Description Re-
quired?

Default
Value

acceptedPro-
fileIDs

The space separated list of accepted authorization profile IDs No None.

vomsInfoDir The absolute path to the VOMS vomsdir directory. Y None.
vomsInfoRe-
fresh

The refresh interval time in minutes of the vomsInfoDir
directory.

No 60

requireCertifi-
cate

The request Subject attribute key-info MUST be present in the
incoming request.

No true

requireProxy The request Subject attribute key-info MUST to be a proxy (PEM
encoded proxy chain).

No false

NOTE: If the ‘‘acceptedProfileIDs‘‘ is not defined, then all profile IDs present in the request environment
profile-id attribute are accepted.

Required Request Attributes

This PIP requires that the request environment contains a profile-id attribute with the profile identifier, and that the
request subject contains the certificate, and its chain, that were used to authenticate to the service, in the key-info
attribute:

• The Profile Identifier

– type: Environment

– id: http://glite.org/xacml/attribute/profile-id

– data type: http://www.w3.org/2001/XMLSchema#anyURI

52 Chapter 5. Argus: Policy Enforcement Point Daemon (PEP)

https://edms.cern.ch/document/1058175
https://edms.cern.ch/document/1078881
https://edms.cern.ch/document/1078881
http://glite.org/xacml/attribute/profile-id
http://www.w3.org/2001/XMLSchema#anyURI

Argus Documentation, Release 1.6

– multiple values allowed: no

– description: The profile ID implemented by the incoming request.

• The Certificate or Proxy Certificate (with chain)

– type: Subject

– id: urn:oasis:names:tc:xacml:1.0:subject:key-info

– data type: http://www.w3.org/2001/XMLSchema#string

– multiple values allowed: no

– description: The PEM encoded certificate chain. No certificate order is assumed however all certificates
must be version 3 certificates. Zero or one VOMS attribute certificate may also be included.

Populated Effective Request Attributes

The PIP will process the request subject key-info attribute and populate the following attributes:

• The Subject Identifier

– type: Subject

– id: urn:oasis:names:tc:xacml:1.0:subject:subject-id

– data type: urn:oasis:names:tc:xacml:1.0:data-type:x500Name

– multiple values allowed: no

– description: This is the Subject DN as given in the end-entity certificate. It is in RFC2253 format.

• The End-entity Certificate Issuer

– type: Subject

– id: http://glite.org/xacml/attribute/subject-issuer

– data type: urn:oasis:names:tc:xacml:1.0:data-type:x500Name

– multiple values allowed: yes

– description: This is the Subject DN of the root CA and all subordinate CAs that signed within the end-
entity certificate chain. It is in RFC2253 format.

If VOMS support is enabled and a VOMS certificate is included within a user’s proxy certificate, the following at-
tributes will be populated within the request:

• The VO Name

– type: Subject

– id: http://glite.org/xacml/attribute/virtual-organization

– data type: http://www.w3.org/2001/XMLSchema#string

– multiple values allowed: yes

– description: The names of the VOs to which the user is a member. Currently there is only ever one value.

• The VOMS Primary FQAN

– type: Subject

– id: http://glite.org/xacml/attribute/fqan/primary

– data type: http://glite.org/xacml/datatype/fqan

5.5. Argus PEP Server Policy Information Points (PIP) 53

http://www.w3.org/2001/XMLSchema#string
http://glite.org/xacml/attribute/subject-issuer
http://glite.org/xacml/attribute/virtual-organization
http://www.w3.org/2001/XMLSchema#string
http://glite.org/xacml/attribute/fqan/primary
http://glite.org/xacml/datatype/fqan

Argus Documentation, Release 1.6

– issuer: DN of the attribute certificate issuer

– multiple values allowed: no

– description: The primary Fully Qualified Attribute Name (FQAN) for the subject

• The VOMS FQANs

– type: Subject

– id: http://glite.org/xacml/attribute/fqan

– data type: http://glite.org/xacml/datatype/fqan

– multiple values allowed: yes

– description: All the Fully Qualified Attribute Name (FQAN)s for the subject

Example Configuration

The following example shows a PEP Server configuration with the Grid authorization profile PIP en-
abled, and accepting both the http://glite.org/xacml/profile/grid-ce/1.0 and the
http://glite.org/xacml/profile/grid-wn/1.0 XACML Grid authorization profiles.

[SERVICE]
entityId = https://example.org/pep
hostname = example.org
pips = GLITEXACMLPROFILE_PIP

[PDP]
pdps = http://localhost:8152/authz

[SECURITY]
trustInfoDir = /etc/grid-security/certificates

[GLITEXACMLPROFILE_PIP]
parserClass = org.glite.authz.pep.pip.provider.GLiteAuthorizationProfilePIPIniConfigurationParser
vomsInfoDir = /etc/grid-security/vomsdir
acceptedProfileIDs = http://glite.org/xacml/profile/grid-ce/1.0 http://glite.org/xacml/profile/grid-wn/1.0

5.5.4 Common XACML Authorization Profile PIP

NOTE: This profile is supported since Argus 1.6 (EMI-3).

This PIP allows the PEP client to send only the end-user certificate or proxy as lone Subject Key-Info attribute. It will
then parse the certificate, extract all the information from the certificate required by the Common XACML Authoriza-
tion Profile, and populate the request with attributes found in the certificate/proxy.

This PIP implements the Common XACML Authorization Profile (1.1.1) specifications.

Configuration

1. Create a new INI section for you PIP (you may choose any valid INI section name. e.g. COMMONXACML-
PROFILE_PIP)

2. Into the PIP INI section add the parserClass property with the value
org.glite.authz.pep.pip.provider.CommonXACMLAuthorizationProfilePIPIniConfigurationParser

54 Chapter 5. Argus: Policy Enforcement Point Daemon (PEP)

http://glite.org/xacml/attribute/fqan
http://glite.org/xacml/datatype/fqan
https://twiki.cern.ch/twiki/bin/view/EMI/CommonXACMLProfileV1_1

Argus Documentation, Release 1.6

3. To enable VOMS attribute certificate support add the vomsInfoDir property with a value corresponding to
the absolute path of the VOMS vomsdir, traditionally /etc/grid-security/vomsdir.

4. If, in the SECURITY section, the trustInfoDir property is not already set, add it with a value of the absolute
filesystem path of your IGTF trust bundle.

5. Configure which profile IDs are to be accepted, normally http://dci-sec.org/xacml/profile/common-authz/1.1

PIP Configuration Properties

Property Description Re-
quired?

Default
Value

acceptedPro-
fileIDs

The space separated list of accepted authorization profile IDs No None.

vomsInfoDir The absolute path to the VOMS vomsdir directory. YES None.
vomsInfoRe-
fresh

The refresh interval time in minutes of the vomsInfoDir
directory.

No 60

requireCertifi-
cate

The request Subject attribute key-info MUST be present in the
incoming request.

No false

requireProxy The request Subject attribute key-info MUST to be a proxy (PEM
encoded proxy chain).

No false

NOTE: If the ‘‘acceptedProfileIDs‘‘ is not defined, then all profile IDs present in the request environment
profile-id attribute are accepted.

Required Request Attributes

This PIP requires that the request environment contains a profile-id attribute with the profile identifier, and that the
request subject contains the certificate, and its chain, that were used to authenticate to the service, in the key-info
attribute:

• The Profile Identifier Attribute

– type: Environment

– id: http://dci-sec.org/xacml/attribute/profile-id

– data type: http://www.w3.org/2001/XMLSchema#anyURI

– multiple values allowed: no

– description: The profile ID implemented by the incoming request, typically
http://dci-sec.org/xacml/profile/common-authz/1.1

• The Subject Key-Info (certificate or proxy, with chain) Attribute

– type: Subject

– id: urn:oasis:names:tc:xacml:1.0:subject:key-info

– data type: http://www.w3.org/2001/XMLSchema#base64Binary

– multiple values allowed: yes

– description: The multiple values are the base64 encoded DER blocks of the certicate/proxy chain.

5.5. Argus PEP Server Policy Information Points (PIP) 55

https://twiki.cern.ch/twiki/bin/view/EMI/CommonXACMLProfileV1_1#Profile_Identifier_Attribute
http://dci-sec.org/xacml/attribute/profile-id
http://www.w3.org/2001/XMLSchema#anyURI
https://twiki.cern.ch/twiki/bin/view/EMI/CommonXACMLProfileV1_1#Subject_Key_Info_Attribute
http://www.w3.org/2001/XMLSchema#base64Binary

Argus Documentation, Release 1.6

Populated Effective Request Attributes

The PIP will process the request subject key-info attribute and populate the following attributes:

• The Subject Identifier Attribute

– type: Subject

– id: urn:oasis:names:tc:xacml:1.0:subject:subject-id

– data type: urn:oasis:names:tc:xacml:1.0:data-type:x500Name

– multiple values allowed: no

– description: X.509 distinguished name of the end-entity certificate. The value is in RFC2253 format, e.g.
“CN=John Doe,DC=example,DC=org”

• The Subject Issuer Attribute

– type: Subject

– id: http://dci-sec.org/xacml/attribute/subject-issuer

– data type: urn:oasis:names:tc:xacml:1.0:data-type:x500Name

– multiple values allowed: yes

– description: X.509 distinguished name of the authority(ies) which issued the end-entity certificate. The
values are in RFC2253 format.

If VOMS support is enabled and a VOMS certificate is included within a user’s proxy certificate, the following at-
tributes will be populated within the request:

• The Virtual Organization (VO) Attribute

– type: Subject

– id: http://dci-sec.org/xacml/attribute/virtual-organization

– data type: http://www.w3.org/2001/XMLSchema#string

– multiple values allowed: yes

– description: The names of the VOs to which the user is a member. Currently there is only ever one value.

• The Primary Group and Group Attributes

– type: Subject

– id: http://dci-sec.org/xacml/attribute/group/primary and http://dci-sec.org/xacml/attribute/group

– data type: http://www.w3.org/2001/XMLSchema#string

– multiple values allowed: no (primary group), yes (groups)

– description: The primary group name, and the list of all group names

• The Primary Role and Role Attributes

– type: Subject

– id: http://dci-sec.org/xacml/attribute/role/primary and http://dci-sec.org/xacml/attribute/role

– data type: http://www.w3.org/2001/XMLSchema#string

– issuer: The group name to which this role belong.

– multiple values allowed: no (primary role), yes (roles)

– description: The primary role, and roles list assigned to the subject.

56 Chapter 5. Argus: Policy Enforcement Point Daemon (PEP)

http://dci-sec.org/xacml/attribute/subject-issuer
http://dci-sec.org/xacml/attribute/virtual-organization
http://www.w3.org/2001/XMLSchema#string
http://dci-sec.org/xacml/attribute/group/primary
http://dci-sec.org/xacml/attribute/group
http://www.w3.org/2001/XMLSchema#string
http://dci-sec.org/xacml/attribute/role/primary
http://dci-sec.org/xacml/attribute/role
http://www.w3.org/2001/XMLSchema#string

Argus Documentation, Release 1.6

Example Configuration

The following example shows a PEP Server configuration with the Common XACML authorization profile PIP
enabled, and accepting the http://dci-sec.org/xacml/profile/common-authz/1.1 EMI Common
XACML Authorization profile.

[SERVICE]
entityId = https://argus.example.org/pep
hostname = argus.example.org

pips = COMMONXACMLPROFILE_PIP

[PDP]
pdps = https://argus.example.org:8152/authz

[SECURITY]
trustInfoDir = /etc/grid-security/certificates

[COMMONXACMLPROFILE_PIP]
parserClass = org.glite.authz.pep.pip.provider.CommonXACMLAuthorizationProfilePIPIniConfigurationParser
vomsInfoDir = /etc/grid-security/vomsdir
acceptedProfileIDs = http://dci-sec.org/xacml/profile/common-authz/1.1

5.5.5 Other Policy Information Points (PIP)

Here are other PIPs that you can configure for testing or debugging purpose

Attribute White List PIP

This PIP can be used to filter out attributes that should not be accepted within a request.

Configuration

1. Create a new INI section for you PIP (you may choose any valid INI section name. e.g. WHITELIST_PIP)

2. Into the PIP INI section add the parserClass property with the value
org.glite.authz.pep.pip.provider.AttributeWhitelistPIPIniConfigurationParser

3. Configure which request attributes are to be accepted

PIP Configuration Properties

Property Description Re-
quired?

Default
Value

acceptedActionAt-
tributes

spaced delimited list attribute IDs that may appear in the
request action

N None.

acceptedEnvrionmen-
tAttributes

spaced delimited list attribute IDs that may appear in the
request environment

N None.

acceptedResourceAt-
tributes

spaced delimited list attribute IDs that may appear in the
request resource

N None.

acceptedSubjectAt-
tributes

spaced delimited list attribute IDs that may appear in the
request subject

N None.

5.5. Argus PEP Server Policy Information Points (PIP) 57

Argus Documentation, Release 1.6

NOTE: if a property is not given then all attributes within the section (i.e. action, environment, resource, or
subject) are accepted.

Example Configuration

The following example shows a PEP Server configuration with the whitelist PIP enabled, accepting only the key-info
attribute from the request subject, and filtering out all other subject attributes. All the other request attributes (action,
resource and environment) are accepted as is.

[SERVICE]
entityId = https://example.org/pep
hostname = example.org
pips = WHITELIST_PIP

[PDP]
pdps = http://localhost:8152/authz

[SECURITY]
trustInfoDir = /etc/grid-security/certificates

[WHITELIST_PIP]
parserClass = org.glite.authz.pep.pip.provider.AttributeWhitelistPIPIniConfigurationParser
acceptedSubjectAttributes = urn:oasis:names:tc:xacml:1.0:subject:key-info

Environment Time PIP

This PIP populates a few time-related attributes within the environment portion of the request.

Note, using this PIP effective disables the response caching in a PEP Server as will make every request different.

Configuration

1. Create a new INI section for you PIP (you may choose any valid INI section name. e.g. TIME_PIP)

2. To PIP INI section add the parserClass property with the value
org.glite.authz.pep.pip.provider.EnvironmentTimePIPIniConfigurationParser

3. Add the name of the created PIP INI section to the list of PIPs in the SERVICE section

Prerequisite Request Attributes

None.

Populate Effective Request Attributes

This PIP will populate the following attributes within the environment portion of the request.

• The Current Time

– type: environment

– id: urn:oasis:names:tc:xacml:1.0:environment:current-time

– data type: http://www.w3.org/2001/XMLSchema#time

58 Chapter 5. Argus: Policy Enforcement Point Daemon (PEP)

http://www.w3.org/2001/XMLSchema#time

Argus Documentation, Release 1.6

– issuer: any

– multiple values allowed: no

– description: The time, in the UTC timezeon, the request was issued

• The Current Date

– type: environment

– id: urn:oasis:names:tc:xacml:1.0:environment:current-date

– data type: http://www.w3.org/2001/XMLSchema#date

– issuer: any

– multiple values allowed: no

– description: The date, in the UTC timezeon, the request was issued

• The Current Date and Time

– type: environment

– id: urn:oasis:names:tc:xacml:1.0:environment:current-dateTime

– data type: http://www.w3.org/2001/XMLSchema#dateTime

– issuer: any

– multiple values allowed: no

– description: The date and time, in the UTC timezone, the request was issued

Example Configuration

The following example shows a PEP Server configuration with the Environment Time PIP enabled:

[SERVICE]
entityId = https://example.org/pep
hostname = example.org
pips = TIME_PIP

[PDP]
pdps = http://localhost:8152/authz

[TIME_PIP]
parserClass = org.glite.authz.pep.pip.provider.EnvironmentTimePIPIniConfigurationParser

Static Attributes PIP

This PIP can populate the action, environment, resource, and subject of the request with a static set of attributes.

This PIP is very useful for testing as it allows for the creation of any arbitrary request.

Configuration

1. Create a new INI section for you PIP (you may choose any valid INI section name)

2. To PIP INI section add the parserClass property with the value
org.glite.authz.pep.pip.provider.StaticPIPIniConfigurationParser

5.5. Argus PEP Server Policy Information Points (PIP) 59

http://www.w3.org/2001/XMLSchema#date
http://www.w3.org/2001/XMLSchema#dateTime

Argus Documentation, Release 1.6

3. Define the property staticAttributesFilewith a fully qualified path to a file that will hold the definitions
for the static attributes

4. If populating action attributes, define the property actionAttributes with a space delimited list of the INI
sections, defined in the staticAttributesFile file, that represent the attributes that should be treated as
action attributes.

5. If populating environment attributes, define the property environmentAttributes with a space delimited
list of the INI sections, defined in the staticAttributesFile file, that represent the attributes that should
be treated as environment attributes.

6. If populating resource attributes, define the property resourceAttributes with a space delimited list of
the INI sections, defined in the staticAttributesFile file, that represent the attributes that should be
treated as resource attributes.

7. If populating subject attributes, define the property subjectAttributes with a space delimited list of the
INI sections, defined in the staticAttributesFile file, that represent the attributes that should be treated
as subject attributes.

8. If the defined subject attributes should be added to each subject in the request, define the property
includeSubjectAttribtuesInAllSubjects with a value of “true”

9. Optionally define the property defaultAttributeIssuer to a value that will be used as the attribute issuer
if the attribute definition does not define an issuer.

10. Add the name of the created PIP INI section to the list of PIPs in the SERVICE section

To define your static attribute files, repeat the following steps for each static attribute you wish to define:

1. Create a new INI section for you PIP (you may choose any valid INI section name)

2. Define the property id with the value of the ID of the attribute

3. Optionally define the property datatype with the datatype of the attribute. If no datatype is define the default
data type will be http://www.w3.org/2001/XMLSchema#string

4. Optionally define the property issuer with the ID of the issuer for the attribute.

5. Define the property values with a delimited string representing the values of the attribute. See next step for
the delimiter.

6. Optionally define the property valueDelimiter with a delimiter string used to separate values in the previ-
ous property. If no delimiter is defined the default delimiter is ‘,’ (comma).

Prerequisite

None.

Populate Attributes

This PIP will populate those attributes defined in the staticAttributesFile file and referenced by either the
actionAttributes , environmentAttributes , resourceAttributes , or subjectAttributes
properties.

Example Configuration

The following example shows a PEP Server configuration with the Static Attributes PIP enabled:

60 Chapter 5. Argus: Policy Enforcement Point Daemon (PEP)

Argus Documentation, Release 1.6

[SERVICE]
entityId = https://example.org/pep
hostname = example.org
pips = STATIC

[PDP]
pdps = http://localhost:8152/authz

[STATIC]
parserClass = org.glite.authz.pep.pip.provider.StaticPIPIniConfigurationParser
staticAttributesFile = /path/to/some/file.ini
actionAttributes = actionId
resourceAttributes = resourceId
subjectAttributes = subjectId

And here is a static attribute definition file, note that this file can include attributes which are not currently used as
action, environment, resource, or subject attributes:

[actionId]
id = urn:oasis:names:tc:xacml:1.0:action:action-id
values = submit

[resourceId]
id = urn:oasis:names:tc:xacml:1.0:resource:resource-id
values = http://example.org/wn

[subjectId]
id = urn:oasis:names:tc:xacml:1.0:subject:subject-id
datatype = urn:oasis:names:tc:xacml:1.0:data-type:x500Name
values = CN=foo

5.6 Argus PEP Clients

5.6.1 pepcli

pepcli is the main ARGUS PEP client, based on the C API of the PEP client.

The pepcli command allows you to submit a XACML request to the PEP daemon and display the XACML response.

The command is very useful to check if a XACML policy applies (decision is Permit, Deny, Not Applicable
or Indeterminate) for the given XACML request. Or to check if the XACML response correspond to the values
you are expecting (uidgid, secondary-gids, ...) for the user mapping.

Installation

The pepcli command is by default installed with the emi-argus metapackage, see Argus EMI Deployment. But
you can also install it separately on your host for testing purpose. To install it with YUM:

yum install argus-pepcli

5.6. Argus PEP Clients 61

Argus Documentation, Release 1.6

Usage

Usage:
pepcli --pepd <URL> --keyinfo <FILE> [options...]
pepcli --pepd <URL> --subjectid <DN> [options...]

Submit a XACML Request to the PEPd and show the XACML Response.

Options:
-p|--pepd <URL> Argus PEP server endpoint URL.
-k|--keyinfo <FILE> XACML Subject key-info: proxy or X509 file.
-s|--subjectid <DN> XACML Subject identifier: user DN (format RFC2253).
-f|--fqan <FQAN> XACML Subject primary FQAN and FQANs

Add multiple --fqan options for secondary FQANs.
-r|--resourceid <URI> XACML Resource identifier.
-a|--actionid <URI> XACML Action identifier.
-t|--timeout <SEC> Connection timeout in second (default 30s).
-x|--requestcontext Show effective XACML Request context.
-v|--verbose Verbose.
-q|--quiet Turn off output.
-d|--debug Show debug information.
-h|--help This help.
-V|--version Display version and exit.

TLS options:
--capath <DIR> Directory containing the server PEM encoded CA certificates.
--cacert <FILE> Server PEM encoded CA certificate filename.
--cert <FILE> Client PEM encoded certificate filename.
--key <FILE> Client PEM encoded private key filename.
--keypasswd <PASSWD> Password of the client private key

If the --keypasswd is omitted and the private key is encrypted,
then you will be prompted for the password.

The MAN page is also available: man pepcli

Return Code

The pepcli command return 0 when a valid XACML Response have been received, but neither content of the
XACML response, nor the decision value are checked.

On error the pepcli command returns the following value:

• 1 on memory allocation error

• 2 invalid option

• 3 certchain file or content (missing certificate block) error

• 4 XACML request error

• 5 PEP-C client library error (see output for more detail)

Examples

Submit a XACML Request to the PEP daemon endpoint URL https://argus.example.org:8154/authz
(using SSL/TLS client authentication) for the resource identified by my_resource_id for the action
my_action_id, using the Grid proxy as credentials /tmp/x509up_u637:

62 Chapter 5. Argus: Policy Enforcement Point Daemon (PEP)

Argus Documentation, Release 1.6

$ pepcli --pepd https://argus.example.org:8154/authz --capath /etc/grid-security/certificate --cert ~/.globus/usercert.pem --key ~/.globus/userkey.pem --keyinfo /tmp/x509up_u637--resourceid my_resource_id --actionid my_action_id
Decision: Permit

5.6.2 PEP Java Client Command Line

The PEP-J library contains a basic command line utility that is useful for sending test requests to the PEP daemon.

The command line client, bin/testreq.sh, takes a single parameter, the path (absolute or relative) path to a client
configuration file. This client will create an empty request and then run any configured PIPs in order to populate it.
The Static Attribute PIP is very useful for creating custom requests with which to test.

5.7 Argus PEP Client Library: C API

5.7.1 Documentation

The Doxygen documentation for the Argus PEP client library describes the C API and have an example.

API: http://argus-authz.github.com/argus-pep-api-c/doc/modules.html

5.7.2 PEP XACML Object Model

<img src=”%ATTACHURLPATH%/Argus_PEP_ObjectModel.png” alt=”Argus_PEP_ObjectModel.png”
width=‘600’ />

5.7.3 Basic Example

Basically, to use the Argus PEP client API, you will have to:

1. import the header with #include "argus/pep.h"

2. create and initialize the PEP client handle with PEP * pep= pep_initialize()

3. set the PEP Server URL with pep_setoption(pep,PEP_OPTION_ENDPOINT_URL,"https://pepd.example.org:8154/authz")

4. if the PEP Server URL is protected by HTTPS with client authentication (the default), you must also configure:

(a) the client certificate or proxy with pep_setoption(pep,PEP_OPTION_ENDPOINT_CLIENT_CERT,"/tmp/x509up_u500")

(b) the client private key or proxy key with pep_setoption(pep,PEP_OPTION_ENDPOINT_CLIENT_KEY,"/tmp/x509up_u500")

(c) the server CA trust anchors path with pep_setoption(pep,PEP_OPTION_ENDPOINT_SERVER_CAPATH,"/etc/grid-security/certificates")

5. Optionally, you can register some Policy Information Points (PIP) and Obligation Handlers (OH) of your own
with pep_addpip(...) and pep_addobligationhandler(...)

6. create a XACML Request and add the required Subject, Resource, Action and Environment to it with
xacml_request_create(), xacml_request_addsubject(request,subject), and so on. See
the PEP XACML Object Model for the complete API.

7. submit the request and get the response: pep_authorize(pep,&request,&response)

8. process the response (if not already done by your obligation handlers)

9. release the PEP client handle with pep_destroy(pep)

5.7. Argus PEP Client Library: C API 63

http://argus-authz.github.com/argus-pep-api-c/doc/modules.html
http://argus-authz.github.com/argus-pep-api-c/doc/group___p_i_p.html
http://argus-authz.github.com/argus-pep-api-c/doc/group___obligation_handler.html
http://argus-authz.github.com/argus-pep-api-c/doc/org.glite.authz.pep-api-c/group___x_a_c_m_l.html

Argus Documentation, Release 1.6

5.7.4 Complex Example

A more detailed PEP client example is available http://argus-authz.github.com/argus-pep-api-
c/doc/pep_client_example_8c-example.html

5.7.5 Multi-threaded Programming

The Argus PEP client library is thread-friendly, but you are not allowed to share a PEP handle among multiple threads.

Each thread have to create its own PEP handle:

/* Each thread creates its own PEP handle */
PEP * pep= pep_initialize();

Within a thread you can reuse the PEP handle (multiple pep_authorize(..) calls).

If your threads are object (OO programming, ...), it is recommended you to create (pep_initialize) the PEP handle in
the constructor, and release it (pep_destroy) in the destructor.

5.7.6 Processing Authorization Decision

The PEP client MUST abide by the authorization decision as described in here:

• If the decision is Permit, then the PEP client SHALL permit access. If obligations accompany the decision,
then the PEP client SHALL permit access only if it understands and it can and will enforce those obligations.

• If the decision is Deny, then the PEP client SHALL deny access.

• If the decision is NotApplicable, meaning that no policy apply, then the PEP client SHALL deny access.

• If the decision is Inderterminate, then the PEP client SHALL deny access. The decision status message
and status code should be used to produce an error message. Example:

...
xacml_result_t * result= xacml_response_getresult(response,i);
fprintf(stdout,"response.result[%d].decision= %s\n", i, decision_tostring(xacml_result_getdecision(result)));
fprintf(stdout,"response.result[%d].resourceid= %s\n", i, xacml_result_getresourceid(result));
if (xacml_result_getdecision(result) == XACML_DECISION_INDETERMINATE) {

xacml_status_t * status= xacml_result_getstatus(result);
fprintf(stdout,"response.result[%d].status.message= %s\n", i, xacml_status_getmessage(status));
statuscode= xacml_status_getcode(status);
fprintf(stdout,"response.result[%d].status.code.value= %s\n", i, xacml_statuscode_getvalue(statuscode));

}
...

5.8 Argus PEP Client: Java Programming Interface

The Argus PEP Java client library is used to communicate with the Argus PEP daemon. It authorizes request and
receives response back from Argus.

5.8.1 Javadoc

Javadoc for the PEP Java client API: http://argus-authz.github.com/argus-pep-api-java/javadoc/2.X/index.html

64 Chapter 5. Argus: Policy Enforcement Point Daemon (PEP)

http://argus-authz.github.com/argus-pep-api-c/doc/pep_client_example_8c-example.html
http://argus-authz.github.com/argus-pep-api-c/doc/pep_client_example_8c-example.html
http://argus-authz.github.com/argus-pep-api-java/javadoc/2.X/index.html

Argus Documentation, Release 1.6

5.8.2 PEP XACML Object Model

The PEP client XACML object model implemented in the package org.glite.authz.common.model follow
this schema:

5.8.3 Basic Example

This is a very simplified example, omitting all the error handling, on how to create a PEP client, a request, and then
authorize the request and process the response.

1. Create a PEP client configuration and initialize it:

PEPClientConfiguration config= new PEPClientConfiguration();
config.addPEPDaemonEndpoint("https://argus.example.org:8154/authz");
// trust and key material for the HTTPS connection with client authentication
config.setTrustMaterial("/etc/grid-security/certificates");
config.setKeyMaterial("/etc/grid-security/hostcert.pem", "/etc/grid-security/hostkey.pem", "keystore_password");

2. Create the PEP client based on the config:

PEPClient pep= new PEPClient(config);

At this point you have a multi-threaded PEP client that can be reuse to submit many authorization requests to the PEP
server.

3. Create an authorization request for a user proxy certificate, based on a profile:

// read the user proxy
PEMFileReader reader= new PEMFileReader();
X509Certificate[] userproxy= reader.readCertificates("/tmp/x509up_u959");
// create the request for a given profile
AuthorizationProfile profile= GridWNAuthorizationProfile.getInstance();
Request request= profile.createRequest(userproxy,

"http://example.org/wn/cluster1",
GridWNAuthorizationProfile.ACTION_EXECUTE);

4. Authorize the request with the Argus PEP daemon:

Response response= pep.authorize(request);

5. Extract the user mapping information from the response:

// will throw an exception if the authorization response is not *Permit*, or if the obligation is not present
Obligation posixMappingObligation= profile.getObligationPosixMapping(response);
String userId= profile.getAttributeAssignmentUserId(posixMappingObligation);
String groupId= profile.getAttributeAssignmentPrimaryGroupId(posixMappingObligation);
List<String> groupIds= profile.getAttributeAssignmentGroupIds(posixMappingObligation);

5.8. Argus PEP Client: Java Programming Interface 65

Argus Documentation, Release 1.6

5.8.4 Processing Authorization Decision

The PEP client MUST abide by the authorization decision as described in here:

• If the decision is Permit, then the PEP client SHALL permit access. If obligations accompany the decision,
then the PEP client SHALL permit access only if it understands and it can and will enforce those obligations.

• If the decision is Deny, then the PEP client SHALL deny access.

• If the decision is NotApplicable, meaning that no policy apply, then the PEP client SHALL deny access.

• If the decision is Inderterminate, then the PEP client SHALL deny access. The decision status message
and status code should be used to produce an error message.

5.8.5 GUI

There is also a Java-based GUI available for sending requests to a PEPd. Just click on the following image which will
download the application to your desktop and start it. Once you’ve downloaded it you can restart it by double-clicking
the Argus-PEP-Client.jnlp file.

5.9 Argus GSI PEP Callout

5.9.1 Module Description

The Globus Toolkit version 3.2 and later have the ability to customize the authorization and gridmap lookup (currently
available in the GridFTP and Gatekeeper servers). The Globus Authorization Callouts framework allows to plug in
authorization and mapping modules.

The GSI PEP Callout module implements the functionality to authorize and map the user by calling out to the Argus
PEP Server.

Authorization and Mapping

Based on the Grid credientials, typically a proxy certificate, the GSI PEP Callout module will send an authorization
request to the Argus PEP Server, and then parse the authorization response decision to authorize the user and the
obligations to map him to a local account.

66 Chapter 5. Argus: Policy Enforcement Point Daemon (PEP)

http://www.globus.org/toolkit/security/callouts/

Argus Documentation, Release 1.6

XACML Profile

The GSI PEP Callout module implements the XACML Grid Worker Node Authorization Profile 1.0, and by default
uses the identifiers described in the profile.

XACML Request

The GSI PEP Callout module sends a request to the PEP Daemon with the following elements:

• XACML subject with the attribute element:

– AttributeId: urn:oasis:names:tc:xacml:1.0:subject:key-info

– Value: The PEM encoded Grid credentials provided by the calling service

• XACML resource with the attribute element:

– AttributeId: urn:oasis:names:tc:xacml:1.0:resource:resource-id

– Value: The value of the GSI PEP Callout configuration directive xacml_resourceid.

• XACML action with the attribute element:

– AttributeId: urn:oasis:names:tc:xacml:1.0:action:action-id

– Value: The service being requested by the client (e.g. file for GridFTP) or the name of the service
passed to the gatekeeper.

• XACML environment with the attribute element:

– AttributeId: http://glite.org/xacml/attribute/profile-id

– Value: http://glite.org/xacml/profile/grid-wn/1.0 (Default)

XACML Response

The PEP Daemon sends back a response to the GSI PEP Callout module. The following response elements are parsed
to authorize and map the user:

• XACML decision element: Contains the authorization decision Permit, Deny, Indeterminate or
NotApplicable

• XACML obligation, ObligationId: http://glite.org/xacml/obligation/local-environment-map/posix,
with the attribute assignment element:

– AttributeId: http://glite.org/xacml/attribute/user-id

– Value: Contains the local identity mapping of the user.

The local identity mapping will only succeed if the authorization decision is Permit.

5.9.2 Configuration

Manual Configuration

To configure the GSI PEP Callout module, you first have to configure the Globus Authorization Callouts framework
to use the GSI PEP Callout library to do the authorization and mapping. Then the GSI PEP Callout module must be
configured.

5.9. Argus GSI PEP Callout 67

https://edms.cern.ch/document/1058175

Argus Documentation, Release 1.6

Globus Authorization Callouts Configuration

Configuration file and configuration directives for the Globus Authorization Callouts to enable the GSI PEP Callout
module.

Configuration File The Globus Authorization Callouts framework uses the following locations (in order) for the
callout configurations file:

• $GSI_AUTHZ_CONF (Environment variable)

• /etc/grid-security/gsi-authz.conf

• $GLOBUS_LOCATION/etc/gsi-authz.conf

• $HOME/.gsi-authz.conf

EMI-1 Configuration Directives Content of the Globus Authorization Callouts configuration file to enable the GSI
Argus PEP Callout function argus_pep_callout for EMI:

Globus authorization and mapping callout to the ARGUS GSI PEP Callout module
format: globus_mapping <library_path> <function_name>
globus_mapping /usr/lib64/libgsi_pep_callout.so argus_pep_callout

For EMI the Argus PEP GSI callout library is installed in the /usr/lib64 directory.

GSI PEP Callout Configuration

Configuration file and configuration directives for the GSI PEP Callout module.

Configuration File The GSI PEP Callout module uses the following locations (in order) for the configurations file:

• $GSI_PEP_CALLOUT_CONF (Environment variable)

• /etc/grid-security/gsi-pep-callout.conf

Configuration Directives The configuration directives for the GSI PEP Callout are single name value lines. Lines
with comments # are allowed.

68 Chapter 5. Argus: Policy Enforcement Point Daemon (PEP)

http://www.globus.org/toolkit/security/callouts/

Argus Documentation, Release 1.6

Directive Description Manda-
tory?

Default Value Example Since

pep_url The endpoint URL of the PEP
daemon.

Yes pep_url
https://pepd.example.org:8154/authz

1.0

xacml_resourceidXACML request resource-id
value

Yes xacml_resourceid
x-urn:example.org:resource:ce:gridftp

1.0

xacml_actionidXACML request action-id value.
Define this parameter to overwrite
the service name passed to the
module by the application

No xacml_actionid
http://glite.org/xacml/action/access

1.0

xacml_profileidXACML request profile-id value.
Define this parameter to overwrite
the default profile id

No http://glite.org/xacml/profile/grid-wn/1.0xacml_profileid
‘‘http://glite.org/xacml/profile/grid-
ce/1.0‘‘

1.2

pep_timeoutConnection timeout in seconds No 30 pep_timeout 60 1.0
pep_ssl_validationEnable SSL validation of the PEP

daemon endpoint URL (HTTPS)
No true pep_ssl_validation

false
1.0

pep_ssl_server_capathCA directory path for the HTTPS
validation of the PEP daemon
endpoint URL

No /etc/grid-security/certificatespep_ssl_server_capath
/etc/grid-security/certificates

1.0

pep_ssl_server_certCertificate file for the HTTPS
validation of the PEP daemon
endpoint URL

No pep_ssl_server_cert
/etc/grid-security/pepdcert.pem

1.0

pep_ssl_client_certClient certificate file for the TLS
client authentication on the PEP
daemon endpoint URL

No /etc/grid-security/hostcert.pempep_ssl_client_cert
/etc/ssl/mycert.pem

1.0

pep_ssl_client_keyClient private key file for the TLS
client authentication on the PEP
daemon endpoint URL

No /etc/grid-security/hostkey.pempep_ssl_server_key
/etc/ssl/mykey.pem

1.0

pep_ssl_client_keypasswdClient private key password Only if
pep_ssl_client_key
is encrypted

pep_ssl_server_keypasswd
mykeypassword

1.0

Configuration Example Example of a valid configuration file for the GSI PEP Callout module:

#
GSI PEP Callout configuration example
#
pep_url https://chaos.switch.ch:8154/authz
xacml_resourceid http://ce.example.org/cream/gridftp

YAIM Configuration

The yaim-core (>= 4.0.12) the function config_lcas_lcmaps_gt4 is now able to configure the Argus GSI PEP
callout module.

In your site-info.def set the following variables:

USE_ARGUS=yes
ARGUS_PEPD_ENDPOINTS="<Argus_URL> ..."
CREAM_PEPC_RESOURCEID=<CreamCE_XACML_resouce_id>

where Argus_URL is the Argus PEP daemon endpoint URL. e.g. ARGUS_PEPD_ENDPOINTS=https://argus.example.org:8154/authz

where CreamCE_XACML_resouce_id is the XACML resource identifier for this cream CE. e.g.
CREAM_PEPC_RESOURCEID=http://glite.org/xacml/resource/cream-ce

5.9. Argus GSI PEP Callout 69

Argus Documentation, Release 1.6

5.9.3 Troubleshooting

Syslog

By default the GSI PEP Callout module logs info and error via syslog.

The syslog facility used is local5 and the identifier is gsi_pep_callout. These log messages are typically in
/var/log/messages

Enabling Debug Information

You can enable the debugging mode of the GSI PEP Callout module to troubleshoot your problem.

Environment Variables

You can set the following environment variables to enable debug mode:

• GSI_PEP_CALLOUT_DEBUG_LEVEL Set the debug level from 0 (none) to 9 (lot of info). Default is 0.

• GSI_PEP_CALLOUT_DEBUG_FILE Set the file to log the debugging information. Default is stderr.

Example

This example shows how to start the GridFTP server in debug mode. The configuration files gsi-authz.conf and
gsi-pep-callout.conf must be correctly configured as previously described.

export GLOBUS_CALLOUT_DEBUG_LEVEL=5
set the gsi-authz config to use (default /etc/grid-security/gsi-authz.conf)
export GSI_AUTHZ_CONF=/etc/grid-security/gsi-authz.conf
set the gsi-pep-callout config to use (default /etc/grid-security/gsi-pep-callout.conf)
export GSI_PEP_CALLOUT_CONF=/etc/grid-security/gsi-pep-callout.conf
export GSI_PEP_CALLOUT_DEBUG_LEVEL=5

globus-gridftp-server -d 255 -p 9999 -debug

The GridFTP server is now running and listening on port 9999. Use the uberftp client or globus-url-copy
to connect to the server with your Grid credentials and obtain debugging information from the server:

• uberftp -P 9999 HOSTNAME

• globus-url-copy file:///etc/passwd gsiftp://HOSTNAME:9999/tmp/e33

5.10 Argus PEP Server Obligation Handlers

Obligation handlers are plugins used by the authorization service in order to adjust the environment, under which an
action will run, to a state that meets a particular set of obligations. Obligation are things like “write output to directory
X” or “perform all work as user 1”.

5.10.1 Grid Map POSIX Account Mapping Obligation Handler

70 Chapter 5. Argus: Policy Enforcement Point Daemon (PEP)

Argus Documentation, Release 1.6

Note: The Grid Map Account Mapping Obligation Handler only works with the Grid Authorization Profile PIP, or
with clients implementing the XACML Grid Worker Node Authorization Profile (v.1.0) or the XACML Grid Comput-
ing Element Authorization Profile (v.1.0) specifications.

This obligation handler maps a subject ID, given as a DN, and set of FQANs, for example those provided by the Grid
Authorization Profile PIP, in to a POSIX account (login name, primary group name and secondary group names).

This mapping is controlled by two grid map files, one that provides the mapping of the subject to an account indicator
(login name or pool account indicatior) and one that maps the subject to a set of group names (one primary and any
number of secondary).

Configuration

1. Create the account and group mapping files appropriate for your environment

2. Create a new INI section for your handler (you may choose any valid INI section name)

3. To handler INI section add the parserClass property with the value
org.glite.authz.pep.obligation.dfpmap.DFPMObligationHandlerConfigurationParser

4. Define at least the required (accountMapFile, groupMapFile, gridMapDir) and any optional config-
uration properties for this handler

5.10. Argus PEP Server Obligation Handlers 71

https://edms.cern.ch/document/1058175
https://edms.cern.ch/document/1078881
https://edms.cern.ch/document/1078881

Argus Documentation, Release 1.6

OH Configuration Properties

Property Description Re-
quired?

Default Value Since

accountMapFileThe absolute path to the map file used to map a
subject to a POSIX login name.

Y None. Ar-
gus
1.0

groupMapFile The absolute path to the map file used to map a
subject to a set of POSIX groups.

Y None. Ar-
gus
1.0

gridMapDir The absolute path to the grid map directory. Y None. Ar-
gus
1.0

handledObligationIdThe identifier of the obligation handled by the
handler. The obligation handler is triggered
only if the obligation ID match this value.

N http://glite.org/xacml/obligation/local-environment-mapAr-
gus
1.5

preferDNForLoginNameIndicates whether to prefer a DN based
mapping for the login name mapping over a
primary FQAN login name mapping.

N true Ar-
gus
1.1

preferDNForPrimaryGroupNameIndicates whether to prefer a DN based
mapping for the primary group name mapping
over a primary FQAN group name mapping

N true Ar-
gus
1.2

noPrimaryGroupNameIsErrorIndicates that the failure to find a primary
group mapping in the group map file cause the
obligation handler to fail..

N false Ar-
gus
1.2

refreshPeriod The period, in minutes, between when the map
files are checked, and if they have been
changed, reread.

N 15 Ar-
gus
1.0

requireSubjectKeyInfoThe obligation handler will only be applied if
the request subject contains a key-info attribute
(PEM encoded certificate)

N true Ar-
gus
1.3.0

useSecondaryGroupNamesForMappingThe obligation handler will create lease file
names containing the secondary groups of the
user

N true Ar-
gus
1.3.1

NOTE: the default ‘‘preferDNForLoginName‘‘ property value was *false* for Argus 1.0 and Argus 1.1. From
Argus 1.2 the default is *true*.

Required Response Obligation Trigger

This obligation handler is triggered if the PDP response contains the obligation
http://glite.org/xacml/obligation/local-environment-map, or the value defined by the
handledObligationId parameter.

Required Request Attributes

This obligation handler requires the following request attributes in order to correctly map the user. The attributes
can be provided by the Grid Authorization Profile PIP, or directly by the clients implementing the XACML Grid
Worker Node Authorization Profile (v.1.0) or the XACML Grid Computing Element Authorization Profile (v.1.0)
specifications.

• The Subject Identifier

72 Chapter 5. Argus: Policy Enforcement Point Daemon (PEP)

https://edms.cern.ch/document/1058175
https://edms.cern.ch/document/1058175
https://edms.cern.ch/document/1078881

Argus Documentation, Release 1.6

– type: Subject

– id: urn:oasis:names:tc:xacml:1.0:subject:subject-id

– data type: urn:oasis:names:tc:xacml:1.0:data-type:x500Name

– multiple values allowed: no

– description: This is the Subject DN as given in the end-entity certificate. It is in RFC2253 format.

• The VOMS Primary FQAN

– type: Subject

– id: http://glite.org/xacml/attribute/fqan/primary

– data type: http://glite.org/xacml/datatype/fqan

– issuer: DN of the attribute certificate issuer

– multiple values allowed: no

– description: The primary Fully Qualified Attribute Name (FQAN) for the subject

• The VOMS FQANs

– type: Subject

– id: http://glite.org/xacml/attribute/fqan

– data type: http://glite.org/xacml/datatype/fqan

– multiple values allowed: yes

– description: All the Fully Qualified Attribute Name (FQAN)s for the subject

Response Obligation Results

This result of this obligation handler is the replacement of the generic
http://glite.org/xacml/obligation/local-environment-map with the more specific obli-
gation http://glite.org/xacml/obligation/local-environment-map/posix.

This later obligation carries the account and group names in the following attribute assignments:

• one http://glite.org/attribute/xacml/user-id account login name

• zero or one http://glite.org/attribute/xacml/group-id/primary primary group name

• zero or more http://glite.org/xacml/attribute/group-id secondary group names

Example Configuration

This is an example PEPd configuration file with one gridmap POSIX account mapping obligation handler defined:

[SERVICE]
entityId = http://argus.example.org/pep
hostname = argus.example.org
obligationHandlers = ACCOUNT_MAPPING_OH

[PDP]
pdps = https://argus.example.org:8152/authz

[ACCOUNT_MAPPING_OH]
parserClass = org.glite.authz.pep.obligation.dfpmap.DFPMObligationHandlerConfigurationParser

5.10. Argus PEP Server Obligation Handlers 73

http://glite.org/xacml/attribute/fqan/primary
http://glite.org/xacml/datatype/fqan
http://glite.org/xacml/attribute/fqan
http://glite.org/xacml/datatype/fqan

Argus Documentation, Release 1.6

accountMapFile = /etc/grid-security/grid-mapfile
groupMapFile = /etc/grid-security/group-mapfile
gridMapDir = /etc/grid-security/gridmapdir

Account and Group Mapping

This Obligation Handler uses the following logic to determine the mapping of the subject to a POSIX account.

Preconditions

• The input to this process is the subject DN of the end-entity certificate of the user and optionally a primary
FQAN and a list of secondary FQANs.

• When dealing with the account map file (the gridmap file) and the group map file, entries are evaluated in the
order listed in the file. Once a match is found processing stops.

• The grid map directory is populated with information for all configured pool accounts on the system. A pool
account is considered “configured” if there is a zero-byte file, whose name is the pool account name, in the grid
map directory. The grid map directory must also be read/writable by the user running the authorization service.

Mapping Steps

1. If a primary FQAN is given it is checked against the mappings listed in the account map file. If the primary
FQAN matches a key in the map file then the associated value provides the account indicator.

2. If no account indicator was determined by means of the primary FQAN the subject DN is checked against the
mappings listed in the account map file. If the DN matches a key in the map file then the associated value
provides the account indicator. If no match is found processing stops and no map is available.

3. If the account indicator starts with a period (‘.’), its value, without the period, is considered to be a pool account
name prefix. If the account indicator does not start with a period it is a POSIX account name. If no account
indicator was determined the mapping process fails.

4. If a primary FQAN is given then it is evaluated against entries in a group map file. The first entry that matches
determines the primary group name. If no match is found, the mapping process fails.

5. If one or more secondary FQANs are given then each one is matched against the group map file and each match
determines a secondary group name. If no matches occur then there are no secondary group names associated
with the account.

6. If the account indicator is a POSIX account name, and zero or one primary group and zero or more secondary
group names were determined then the mapping is completed. The user is mapped to that account.

7. If the account indicator is a pool account name prefix a lookup in the grid map
directory occurs. The file looked for is generated according to the template
encoded_dn{:primary_group_name{:secondary_group_name}*}? with the secondary
group names listed in ascending alphabetical order.

8. If the file exists and has a link count of 2 then the hard link is followed to a file whose name is used as the POSIX
account name. The last modified time of the two files is updated to the current time. If the link count is not 2 or
the POSIX account name does not start with the account name prefix, the mapping process fails.

9. If the file does not exist, a list of files, within the grid map directory, matching the pool account name prefix
followed exclusively by one or more numeric digits, is retrieved. An example regular expression representation
of this would be prod[0-9]+

74 Chapter 5. Argus: Policy Enforcement Point Daemon (PEP)

Argus Documentation, Release 1.6

10. This list of files is searched for a file whose link count is 1, this is a candidate pool account file. A hard link to
the pool account file, whose name corresponds to the filled in template described above is then created. If no
such pool account file is found the mapping process fails.

11. The pool account file link count is rechecked, if it is more than 2 (indicating another request mapped to that
same file at the same time) the created link is removed and the mapping process reverts to the previous step.

12. If the link count is 2 the mapping is complete. The user is mapped to the pool account corresponding to the
given file.

Note: In the case where no FQANs are available, this obligation handler only returns a login name. No group
information is returned.

DN Encoding Rules

1. Leading zeros are removed from attribute types that are encoded as dotted decimal OIDs

2. DirectoryString attribute values of type PrintableString and UTF8String are not output in hexadecimal format

3. DirectoryString attribute values of types other than PrintableString and UTF8String are output in hexadecimal
format

4. Leading and trailing white space characters are removed from non-hexadecimal attribute values (unless the value
consists entirely of white space characters)

5. Internal substrings of one or more white space characters are converted to a single space in non-hexadecimal
attribute values

6. Relative Distinguished Names containing more than one Attribute Value Assertion (AVA) are output in the fol-
lowing order: an alphabetical ordering of AVAs containing standard keywords, followed by a numeric ordering
of AVAs containing OID keywords.

7. The only characters in attribute values that are escaped are those which section 2.4 of RFC 2253 states must be
escaped (they are escaped using a preceding backslash character)

8. The entire name is converted to upper case using US localization

9. The entire name is converted to lower case using US localization

10. The name is finally normalized using normalization form KD, as described in the Unicode Standard and UAX
#15

11. The DN is converted to the non-standard, openssl one line format

12. The string is then URL-encoded

Note:

• A reorder of entries in the group map file that results in a change in the primary group will cause an incoming
user to be mapped to a new account as this information is part of the link created in the grid map directory.

• A reordering of entries in the group map file that does not result in a change to the primary group but provides
the same secondary groups in a different order does not result in a new mapping for a returning user since the
link created in the grid map directory orders the secondary group names in ascending alphabetical order.

5.10. Argus PEP Server Obligation Handlers 75

Argus Documentation, Release 1.6

76 Chapter 5. Argus: Policy Enforcement Point Daemon (PEP)

CHAPTER 6

Argus Monitoring

6.1 Nagios Probes for Argus (UMD)

6.1.1 Installation

Prerequisites

• Python 2.4 or newer (not Python 3000)

• UMD-3 or later (or EMI-3) repository installed

• Host certificate & IGTF-bundle

• Nagios server

Where to install

• This set of probes needs to be installed on the Nagios server only. On the client side (where the Argus services
actually run), no action is required.

Install instructions

There is available a rpm called “nagios-plugins-argus”, (nagios-plugins-argus - v. 1.1.0 (EMI-3). It can be installed as
follows:

yum install nagios-plugins-argus

This installs the plugins into the /usr/libexec/grid-monitoring/probes/ directory. It is up to the user to
bind them into the local Nagios environment.

NOTE: If you use iptables you need to open the ports on client side (where the Argus services are installed):

for IPv4 do:

iptables -I INPUT 1 -p tcp --dport 8154 -j ACCEPT
iptables -I INPUT 1 -p tcp --dport 8152 -j ACCEPT
iptables -I INPUT 1 -p tcp --dport 8150 -j ACCEPT
/etc/init.d/iptables save
/etc/init.d/iptables restart

for IPv6 do:

77

http://eticssoft.web.cern.ch/eticssoft/repository/emi/emi.argus.nagios-plugins/1.1.0/noarch/

Argus Documentation, Release 1.6

ip6tables -I INPUT 1 -p tcp --dport 8154 -j ACCEPT
ip6tables -I INPUT 1 -p tcp --dport 8152 -j ACCEPT
ip6tables -I INPUT 1 -p tcp --dport 8150 -j ACCEPT
/etc/init.d/ip6tables save
/etc/init.d/ip6tables restart

6.1.2 Overview of probes

There are 9 different probes available, three for each service:

Service Probe-Name
PAP nagios-plugins-argus.PAP.memory
^ nagios-plugins-argus.PAP.policies
^ nagios-plugins-argus.PAP.status
PDP nagios-plugins-argus.PDP.memory
^ nagios-plugins-argus.PDP.status
^ nagios-plugins-argus.PDP.traffic
PEPD nagios-plugins-argus.PEP.memory
^ nagios-plugins-argus.PEP.status
^ nagios-plugins-argus.PEP.traffic

PAP probes

nagios-plugins-argus.PAP.status

checks if the service is available. This is done by a call to https://%60hostname‘:8150/pap/status, if there is a valid
response the service is considered up and running.

Options

Manda-
tory

CLI option Description Default

YES –
hostname=HOSTNAME

The hostname of the service

–cert CERT The SSL client certificate /etc/grid-security/hostcert.pem
–key KEY The private key (the key must be unencrypted) /etc/grid-security/hostkey.pem
–capath
CAPATH

The directory where trust anchors are stored on the
system

/etc/grid-security/certificates

–help show this help message and exit
–port PORT The port of the service 8152
–url URL The status endpoint URL of the service, e.g.

https://hostname:port/status
–version show program’s version number and exit
–timeout
TIMEOUT

The TCP timeout for the HTTPS connection in
seconds

20

–verbose verbose mode False

nagios-plugins-argus.PAP.memory

the response of the call executed by the status probe is parsed. The value for the current memory consumption is read
out and displayed in the Status information field of the Nagios control panel and written into the Performance Data tab
of Nagios. Hence it can be displayed as a graph over time by Nagios add-ons, e.g. pnp.

78 Chapter 6. Argus Monitoring

https://%60hostname

Argus Documentation, Release 1.6

Options

Manda-
tory

CLI option Description Default

YES –
hostname=HOSTNAME

The hostname of the service

–warning
MEM_WARN

Memory usage warning threshold in MB 224.0

–critical
MEM_CRIT

Memory usage critical threshold in MB 256.0

–cert CERT The SSL client certificate /etc/grid-security/hostcert.pem
–key KEY The private key (the key must be unencrypted) /etc/grid-security/hostkey.pem
–capath
CAPATH

The directory where trust anchors are stored on the
system

/etc/grid-security/certificates

–help show this help message and exit
–port PORT The port of the service 8152
–url URL The status endpoint URL of the service, e.g.

https://hostname:port/status
–version show program’s version number and exit
–timeout
TIMEOUT

The TCP timeout for the HTTPS connection in
seconds

20

–verbose verbose mode False

nagios-plugins-argus.PAP.policies

the response of the call executed by the status probe is parsed. The value for the current number of policies in the
monitored PAP is read out and displayed in the Status information field of the Nagios control panel and written into
the Performance Data tab of Nagios. Hence it can be displayed as a graph over time by Nagios add-ons, e.g. pnp.

Options

Manda-
tory

CLI option Description Default

YES –
hostname=HOSTNAME

The hostname of the service

–cert CERT The SSL client certificate /etc/grid-security/hostcert.pem
–key KEY The private key (the key must be unencrypted) /etc/grid-security/hostkey.pem
–capath
CAPATH

The directory where trust anchors are stored on the
system

/etc/grid-security/certificates

–help show this help message and exit
–port PORT The port of the service 8152
–url URL The status endpoint URL of the service, e.g.

https://hostname:port/status
–version show program’s version number and exit
–timeout
TIMEOUT

The TCP timeout for the HTTPS connection in
seconds

20

–verbose verbose mode False

PDP probes

nagios-plugins-argus.PDP.status

checks if the service is available. This is done by a call to https://%60hostname‘:8152/status, if there is a valid response
the service is considered up and running.

6.1. Nagios Probes for Argus (UMD) 79

https://%60hostname

Argus Documentation, Release 1.6

Options

Manda-
tory

CLI option Description Default

YES –
hostname=HOSTNAME

The hostname of the service

–cert CERT The SSL client certificate /etc/grid-security/hostcert.pem
–key KEY The private key (the key must be unencrypted) /etc/grid-security/hostkey.pem
–capath
CAPATH

The directory where trust anchors are stored on the
system

/etc/grid-security/certificates

–help show this help message and exit
–port PORT The port of the service 8152
–url URL The status endpoint URL of the service, e.g.

https://hostname:port/status
–version show program’s version number and exit
–timeout
TIMEOUT

The TCP timeout for the HTTPS connection in
seconds

20

–verbose verbose mode False

nagios-plugins-argus.PDP.memory

the response of the call executed by the status probe is parsed. The value for the current memory consumption is read
out and displayed in the Status information field of the Nagios control panel and written into the Performance Data tab
of Nagios. Hence it can be displayed as a graph over time by Nagios add-ons, e.g. pnp.

Options

Manda-
tory

CLI option Description Default

YES –
hostname=HOSTNAME

The hostname of the service

–warning
MEM_WARN

Memory usage warning threshold in MB 224.0

–critical
MEM_CRIT

Memory usage critical threshold in MB 256.0

–cert CERT The SSL client certificate /etc/grid-security/hostcert.pem
–key KEY The private key (the key must be unencrypted) /etc/grid-security/hostkey.pem
–capath
CAPATH

The directory where trust anchors are stored on the
system

/etc/grid-security/certificates

–help show this help message and exit
–port PORT The port of the service 8152
–url URL The status endpoint URL of the service, e.g.

https://hostname:port/status
–version show program’s version number and exit
–timeout
TIMEOUT

The TCP timeout for the HTTPS connection in
seconds

20

–verbose verbose mode False

nagios-plugins-argus.PDP.traffic

the response of the call executed by the status probe is parsed. The value for the current number of requests executed
and the number how many of them have been successful is read out and compared to the same numbers of the former
test executed. Out of this the requests per second, the completed requests per second and the erroneous requests per
second are computed and written into the Performance Data tab of Nagios. Hence it can be displayed as a graph over

80 Chapter 6. Argus Monitoring

Argus Documentation, Release 1.6

time by Nagios add-ons, e.g. pnp. Additionally the number of requests since the last test is written into the Status
information field of the Nagios control panel.

Options

Manda-
tory

CLI option Description Default

YES –
hostname=HOSTNAME

The hostname of the service

–cert CERT The SSL client certificate /etc/grid-security/hostcert.pem
–key KEY The private key (the key must be

unencrypted)
/etc/grid-security/hostkey.pem

–capath
CAPATH

The directory where trust anchors are
stored on the system

/etc/grid-security/certificates

–
tempdir=TEMP_DIR

Storage path for the needed temporary file ../../../../var/lib/grid-monitoring/nagios-plugins-argus

–
tempfile=TEMP_FILE

Name for the needed temporary file hostname.nagios-plugins-
argus.PDP.traffic.pickle

–help show this help message and exit
–port PORT The port of the service 8152
–url URL The status endpoint URL of the service,

e.g.
https://hostname:port/status

–version show program’s version number and exit
–timeout
TIMEOUT

The TCP timeout for the HTTPS
connection in seconds

20

–verbose verbose mode False

PEP Server probes

nagios-plugins-argus.PEP.status

checks if the service is available. This is done by a call to https://%60hostname‘:8154/status, if there is a valid response
the service is considered up and running.

6.1. Nagios Probes for Argus (UMD) 81

https://%60hostname

Argus Documentation, Release 1.6

Options

Manda-
tory

CLI option Description Default

YES –
hostname=HOSTNAME

The hostname of the service

–warning
MEM_WARN

Memory usage warning threshold in MB 224.0

–critical
MEM_CRIT

Memory usage critical threshold in MB 256.0

–cert CERT The SSL client certificate /etc/grid-security/hostcert.pem
–key KEY The private key (the key must be unencrypted) /etc/grid-security/hostkey.pem
–capath
CAPATH

The directory where trust anchors are stored on the
system

/etc/grid-security/certificates

–help show this help message and exit
–port PORT The port of the service 8152
–url URL The status endpoint URL of the service, e.g.

https://hostname:port/status
–version show program’s version number and exit
–timeout
TIMEOUT

The TCP timeout for the HTTPS connection in
seconds

20

–verbose verbose mode False

nagios-plugins-argus.PEP.memory

the response of the call executed by the status probe is parsed. The value for the current memory consumption is read
out and displayed in the Status information field of the Nagios control panel and written into the Performance Data tab
of Nagios. Hence it can be displayed as a graph over time by Nagios add-ons, e.g. pnp.

Options

Manda-
tory

CLI option Description Default

YES –
hostname=HOSTNAME

The hostname of the service

–warning
MEM_WARN

Memory usage warning threshold in MB 224.0

–critical
MEM_CRIT

Memory usage critical threshold in MB 256.0

–cert CERT The SSL client certificate /etc/grid-security/hostcert.pem
–key KEY The private key (the key must be unencrypted) /etc/grid-security/hostkey.pem
–capath
CAPATH

The directory where trust anchors are stored on the
system

/etc/grid-security/certificates

–help show this help message and exit
–port PORT The port of the service 8152
–url URL The status endpoint URL of the service, e.g.

https://hostname:port/status
–version show program’s version number and exit
–timeout
TIMEOUT

The TCP timeout for the HTTPS connection in
seconds

20

–verbose verbose mode False

82 Chapter 6. Argus Monitoring

Argus Documentation, Release 1.6

nagios-plugins-argus.PEP.traffic

the response of the call executed by the status probe is parsed. The value for the current number of requests executed
and the number how many of them have been successful is read out and compared to the same numbers of the former
test executed. Out of this the requests per second, the completed requests per second and the erroneous requests per
second are computed and written into the Performance Data tab of Nagios. Hence it can be displayed as a graph over
time by Nagios add-ons, e.g. pnp. Additionally the number of requests since the last test is written into the Status
information field of the Nagios control panel.

Options

Manda-
tory

CLI option Description Default

YES –
hostname=HOSTNAME

The hostname of the service

–cert CERT The SSL client certificate /etc/grid-security/hostcert.pem
–key KEY The private key (the key must be

unencrypted)
/etc/grid-security/hostkey.pem

–capath
CAPATH

The directory where trust anchors are
stored on the system

/etc/grid-security/certificates

–
tempdir=TEMP_DIR

Storage path for the needed temporary file ../../../../var/lib/grid-monitoring/nagios-plugins-argus

–
tempfile=TEMP_FILE

Name for the needed temporary file hostname.nagios-plugins-
argus.PDP.traffic.pickle

–help show this help message and exit
–port PORT The port of the service 8152
–url URL The status endpoint URL of the service,

e.g.
https://hostname:port/status

–version show program’s version number and exit
–timeout
TIMEOUT

The TCP timeout for the HTTPS
connection in seconds

20

–verbose verbose mode False

6.1. Nagios Probes for Argus (UMD) 83

Argus Documentation, Release 1.6

84 Chapter 6. Argus Monitoring

CHAPTER 7

Example of Authorization Requests and Policies

The following examples of policies and associated requests are meant to illustrate some of the possible policies,
requests, and resulting authorization decisions.

Note, the examples below use the PAP’s simplified policy language to express policies. So please review this syntax,
before proceeding, if you are not yet familiar with it.

7.1 User Based Authorization

In this example one user is permitted, and one is denied, the ability to submit jobs on the CERN CE resource. Each
user is identified by a X.509 subject DN. This example also shows how identity-based access control is simply a
degenerate case of attribute-based access control.

7.1.1 Authorization Policy

resource "http://cern.ch/authz/ce1" {
action "http://cern.ch/authz/actions/ce-submit" {

rule permit {
subject="CN=John Doe,OU=Standard Commercial Certificate,O=Acme,L=Zuerich,ST=Zuerich,C=CH"

}
rule deny {

subject="CN=Jane Smith,OU=Standard Commercial Certificate,O=Acme,L=Zuerich,ST=Zuerich,C=CH"
}

}
}

7.1.2 Requests

A request of:

• resource attributes:

– id: urn:oasis:names:tc:xacml:1.0:resource:resource-id, value:
http://cern.ch/authz/ce1

– any other attributes

• action attributes:

85

Argus Documentation, Release 1.6

– id: urn:oasis:names:tc:xacml:1.0:action:action-id, value:
http://cern.ch/authz/actions/ce-submit

– any other attributes

• subject attributes:

– id: urn:oasis:names:tc:xacml:1.0:subject:subject-id, value: CN=John
Doe,OU=Standard Commercial Certificate,O=Acme,L=Zuerich,ST=Zuerich,C=CH

would result in an authorization decision of permit because the given resource and actions IDs match what was given
in the policy and the subject ID DN matches what was given in the permit rule. If the request contained any other
resource, action, or subject attribute these would be ignored since the policy does not reference them. If the request
had not contained the attributes listed it would have resulted in an authorization decision of not applicable since
no policy would have matched the request.

A request of:

• resource attributes:

– id: urn:oasis:names:tc:xacml:1.0:resource:resource-id, value:
http://cern.ch/authz/ce1

– any other attributes

• action attributes:

– id: urn:oasis:names:tc:xacml:1.0:action:action-id, value:
http://cern.ch/authz/actions/ce-submit

– any other attributes

• subject attributes:

– id: urn:oasis:names:tc:xacml:1.0:subject:subject-id, value: CN=Jane
Smith,OU=Standard Commercial Certificate,O=Acme,L=Zuerich,ST=Zuerich,C=CH

would result in an authorization decision of deny since the resource and action IDs match and this time the subject
ID matches the requirement for the deny rule.

Note, in the second request, if the subject ID had contained at least the values CN=John Doe
,OU=Standard Commercial Certificate,O=Acme,L=Zuerich,ST=Zuerich,C=CH and CN=Jane
Smith,OU=Standard Commercial Certificate,O=Acme,L=Zuerich,ST=Zuerich,C=CH the au-
thorization decision would have been permit since the permit rule would have been evaluated first and would have
returned the result.

7.2 Per-VO Pilot Job Authorization Policy

This example shows a policy that allows pilot jobs from one VO, atlas, and denies pilot jobs from others. It also
demonstrates rules that rely on more than one attribute.

7.2.1 Authorization Policy

resource "http://cern.ch/authz/ce1" {
action "http://cern.ch/authz/actions/ce-submit" {

rule permit {
vo="atlas"
pilot-job="true"

}

86 Chapter 7. Example of Authorization Requests and Policies

Argus Documentation, Release 1.6

rule deny {
pilot-job="true"

}
}

}

7.2.2 Requests

A request of:

• resource attributes:

– id: urn:oasis:names:tc:xacml:1.0:resource:resource-id, value:
http://cern.ch/authz/ce1

– any other attributes

• action attributes:

– id: urn:oasis:names:tc:xacml:1.0:action:action-id, value:
http://cern.ch/authz/actions/ce-submit

– any other attributes

• subject attributes:

– id: http://authz-interop.org/xacml/subject/vo, value: atlas

– id: http://example.org/authz/attribute/pilot-job, value: true

would result in a decision of permit since the atlas VO is permitted to submit pilot jobs. A request where the VO
was lhcb or cms would result in a decision of deny since these VOs are not permitted to submit jobs.

A request of: * resource attributes:

• id: urn:oasis:names:tc:xacml:1.0:resource:resource-id, value:
http://cern.ch/authz/ce1

• any other attributes * action attributes:

• id: urn:oasis:names:tc:xacml:1.0:action:action-id, value:
http://cern.ch/authz/actions/ce-submit

• any other attributes * subject attributes:

• id: http://authz-interop.org/xacml/subject/vo, value: atlas

would result in a decision of not applicable since the current policy indicates that only jobs from the VO atlas
that are also pilot jobs are permitted. Requests without a pilot-job attribute are not addressed by this policy.

7.2. Per-VO Pilot Job Authorization Policy 87

Argus Documentation, Release 1.6

88 Chapter 7. Example of Authorization Requests and Policies

CHAPTER 8

Legacy Pages from Twiki site

Warning: The pages below have been converted to the new documentation format without any specific review.
They are coming from the former Argus and are probably obsolete. They are kept here for reference only.

%META:TOPICINFO{author=”ad968f62f612332eff6b” date=”1355496377” format=”1.1” reprev=”1.3” ver-
sion=”1.3”}% %META:TOPICPARENT{name=”ArgusEMIDeployment”}%

8.1 Argus EMIR Publisher Configuration (EMI-3)

You can use EMIR-SERP to publish the Argus resource information to the EMIRegisty. EMIR-SERP uses the infor-
mation already available in the resource BDII and publish it to an EMIR DSR endpoint.

8.1.1 Local Resource BDII

Check that the local resource BDII is running and return service information:

ldapsearch -x -h localhost -p 2170 -b ’GLUE2GroupID=resource,o=glue’
objectCLass=GLUE2Service

This query should return 1 entry for the Argus service. If it is not the case, something is fishy in the installtion...

8.1.2 Install and Configure EMIR SERP

Install the EMIR SERP package:

yum install emir-serp

Edit the configuration file /etc/emi/emir-serp/emir-serp.ini and set the following:
...
url = http://emitbdsr1.cern.ch:9126
...
[servicesFromResourceBDII]
resource_bdii_url = ldap://localhost:2170/GLUE2GroupID=resource,o=glue
...

And start the EMIR-SERP service:

/sbin/service emir-serp start

You can verifiy that the information is correctly published by browsing: http://emitbdsr1.cern.ch:9126/services

89

https://twiki.cern.ch/twiki/bin/view/EMI/SERP
https://twiki.cern.ch/twiki/bin/view/EMI/EMIRegistry
https://twiki.cern.ch/twiki/bin/view/EMI/DSR
http://emitbdsr1.cern.ch:9126/services

Argus Documentation, Release 1.6

%META:TOPICINFO{author=”ad968f62f612332eff6b” date=”1340980935” format=”1.1” version=”1.12”}%
%META:TOPICPARENT{name=”AuthorizationFramework”}%

8.2 Argus Services (EMI-1) Fine Tuning

8.2.1 Optimizing Argus Memory Usage

The Argus 1.3 services (PAP, PDP and PEP Server) don’t have fine tuned memory limits. For production sites it is
therefore recommended to manually set a memory limit for each service.

NOTICE: Starting with Argus 1.4, the memory limits are already set, but you can adapt them for your special need.

Argus PAP Memory

In the PAP, the memory usage of the PAP depends directly on the number of policies.

• Default memory limit: 512 MB (v.1.4), 256MB (v.1.5)

– No default memory limit set for version lower than v.1.4

• The default memory limit is typically enough for:

– ~2‘000 policies (resource - action - obligation - rule)

– ~20‘000 rules in one policy (~20‘000 DN’s or FQAN’s)

PAP Memory Setting for Production

For production sites, which typically have less than 500 policies, we recommend to set the PAP memory limit to 256
MB

• Recommended memory limit (assuming less than 500 policies): 256 MB

• The value can be changed by setting the variable PAP_JAVA_OPTS="-Xmx256m" in the
/etc/sysconfig/argus-pap configuration file

You have to restart the Argus PAP service to apply the new memory limit settings.

Argus PDP Memory

The PDP memory usage depends on the number of policies it has to import from the PAP.

• Default memory limit: 256 MB (v.1.4)

– No default memory limit set for version lower than v.1.4

• The needed memory is comparable with the memory needed by the PAP

PDP Memory Setting for Production

For production sites, it is highly recommended to set a memory limit, to avoid a growing of the used memory (up to 1
GB) by the PDP.

• Recommended memory limit (assuming less than 500 policies in the PAP): 256 MB

• The value can be changed by setting the variable PDP_JOPTS="-Xmx256M" in the
/etc/sysconfig/argus-pdp configuration file

You have to restart the Argus PDP service to apply the new memory limit settings.

90 Chapter 8. Legacy Pages from Twiki site

Argus Documentation, Release 1.6

Argus PEP Server Memory

The PEP Server memory usage depends on the cache-size.

• Default memory limit: 512MB (v.1.3.1) and 128MB (v.1.4), and 256MB (v.1.5)

– No default memory limit set for version lower than v.1.3.1

• Default value for the cache size: max. 500 cached PDP responses

The value for the cache size (maximumCachedResponses) can be changed following the PEP Server Configura-
tion documentation.

PEP Server Memory Setting for Production

The default memory limit set for the PEP Server v1.3.1 is still rather high, It can safely be lowered without any
degradation of performance, and as long as the cache-size is not increased. For PEP Server version lower than v1.3.1,
it is highly recommended to set a memory limit, to avoid a growing of the used memory (up to 1 GB).

• Recommended memory limit: 256 MB

– The previous memory limit of 128MB in Argus 1.4.0 was too low for site with a lot of pool accounts.

• The value can be changed by setting the variable PEPD_JOPTS="-Xmx256M" in the
/etc/sysconfig/argus-pepd configuration file

You have to restart the Argus PEP Server service to apply the new memory limit settings.

8.2.2 Production Logging Settings

By default the Argus 1.3 (EMI-1) services don’t have production specific logging configuration, therefore, for produc-
tion sites it is recommended to manually configure the logging for each service.

NOTICE: Starting with Argus 1.4, the services already use these production logging configuration.

For production sites, we have define the following logging policy:

• Log files rotation:

– daily rotating (at midnight)

– or when the file size >= 100MB

• Rotated log files are gzipped

• History of log files keep for 90 days

The Argus services uses the Logback Logging Framework to do their logging. The logback framework can be config-
ured to implement the production logging policy.

Argus PAP Logging

The Argus PAP service logging configuration is configured with the /etc/argus/pap/logging/standalone/logback.xml
file.

PAP Logging Configuration for Production

To configure the Argus PAP service for production logging, please download the attached configuration file and store
it as /etc/argus/pap/logging/standalone/logback.xml:

wget --no-check-certificate%ATTACHURL%/pap-logback.xml -O /etc/argus/pap/logging/standalone/logback.xml

You have to restart the PAP service to apply the new logging configuration.

8.2. Argus Services (EMI-1) Fine Tuning 91

http://logback.qos.ch/manual/index.html

Argus Documentation, Release 1.6

Argus PDP Logging

The Argus PDP service logging configuration is configured with the /etc/argus/pdp/logging.xml file.

PDP Logging Configuration for Production

To configure the Argus PDP service for production logging, please download the attached configuration file and store
it as /etc/argus/pdp/logging.xml:

wget --no-check-certificate%ATTACHURL%/pdp-logging.xml -O /etc/argus/pdp/logging.xml

The PDP will automatically reload its logging configuration, no need to restart the service.

Argus PEP Server Logging

The Argus PEP Server service logging configuration is configured with the /etc/argus/pepd/logging.xml
file.

PEP Server Logging Configuration for Production

To configure the Argus PEP Server service for production logging, please download the attached configuration file and
store it as /etc/argus/pepd/logging.xml:

wget --no-check-certificate %ATTACHURL%/pepd-logging.xml -O
/etc/argus/pepd/logging.xml

The PEP Server will automatically reload its logging configuration, no need to restart the service.

%META:FILEATTACHMENT{name=”pap-logback.xml” attachment=”pap-logback.xml” attr=”” com-
ment=”PAP logging config” date=”1311669537” path=”pap-logback.xml” size=”2157” stream=”pap-
logback.xml” tmpFilename=”/usr/tmp/CGItemp26785” user=”ad968f62f612332eff6b” version=”3”}%
%META:FILEATTACHMENT{name=”pdp-logging.xml” attachment=”pdp-logging.xml” attr=”” com-
ment=”PDP logging config” date=”1311669557” path=”pdp-logging.xml” size=”5541” stream=”pdp-
logging.xml” tmpFilename=”/usr/tmp/CGItemp26834” user=”ad968f62f612332eff6b” version=”3”}%
%META:FILEATTACHMENT{name=”pepd-logging.xml” attachment=”pepd-logging.xml” attr=”” comment=”PEP
Server logging config” date=”1311669570” path=”pepd-logging.xml” size=”5067” stream=”pepd-logging.xml”
tmpFilename=”/usr/tmp/CGItemp26858” user=”ad968f62f612332eff6b” version=”3”}%

%META:TOPICINFO{author=”ad968f62f612332eff6b” date=”1277121935” format=”1.1” reprev=”1.1” ver-
sion=”1.1”}% %META:TOPICPARENT{name=”AuthorizationFramework”}%

8.3 Argus Development Tools

The tools used by the Argus PT to develop the Argus Authorization Service

8.3.1 Development

• Eclipse IDE for all Java and C development (http://www.eclipse.org/)

• CERN subversion server for the version control of all Argus components
(http://svnweb.cern.ch/world/wsvn/glxa)

• CERN wiki for the development and product documentation (https://twiki.cern.ch/twiki/bin/view/EGEE/AuthorizationFramework)

92 Chapter 8. Legacy Pages from Twiki site

http://www.eclipse.org/
http://svnweb.cern.ch/world/wsvn/glxa
https://twiki.cern.ch/twiki/bin/view/EGEE/AuthorizationFramework

Argus Documentation, Release 1.6

8.3.2 Build

• Maven for the compilation of the main Java components (http://maven.apache.org/)

• ant for the compilation of the PEP Java client library (http://ant.apache.org/)

• Autotools, configure and make for the compilation of the C components

• ETICS for the packaging and release management of all the Argus components (https://etics.cern.ch/)

• YAIM scripts for the glite-ARGUS node configuration

8.3.3 Test

• JUnit for some of the Java components

• Grinder for the internal load and stress testing of the server components (http://grinder.sourceforge.net/)

8.3.4 QA

• GGUS for users support (http://www.ggus.org)

• LCG Savannah for bugs, tasks and patches tracking (https://savannah.cern.ch)

• A code review was done by the PSNC Security Team, but we don’t have enough resource within the Argus PT
to do it ourself

• CERN vNode test bed using the automatic YAIM-gen for product certification

8.3.5 Infrastructure and Repository

• Some virtual machines for internal testing

• CERN YUM repository for deployment

• YAIM for the glite-ARGUS node configuration

%META:TOPICINFO{author=”ad968f62f612332eff6b” date=”1271254649” format=”1.1” reprev=”1.1” ver-
sion=”1.1”}% %META:TOPICPARENT{name=”AuthorizationFramework”}%

8.4 GGUS User Support for Argus

8.4.1 Argus Support Unit FAQ

1801 What is the purpose of the Argus Support?

Provide support for site administrators on the installation, the configuration and the operation of the Argus Authoriza-
tion Service.

1802 Who is responsible for Argus Support?

Argus product team (PT) members.

8.4. GGUS User Support for Argus 93

http://maven.apache.org/
http://ant.apache.org/
https://etics.cern.ch/
http://grinder.sourceforge.net/
http://www.ggus.org
https://savannah.cern.ch

Argus Documentation, Release 1.6

1803 How does a ticket arrive at Argus Support?

Currently through the existing argus-support@cern.ch mailing list.

1804 What does the Argus Support manager have to do?

Dispatch support request.

1805 What does the person dealing with Argus Support have to do?

• Try to solve the problem with the user.

• If necessary, submit a bug in savannah.

• If relevant, update our FAQ with problem and solution.

1806 What documentation is available on Argus Support?

Extensive documentation is available at https://twiki.cern.ch/twiki/bin/view/EGEE/AuthorizationFramework

%META:TOPICINFO{author=”ad968f62f612332eff6b” date=”1254385015” format=”1.1” version=”1.3”}%
%META:TOPICPARENT{name=”AuthorizationFramework”}%

8.5 Authorization Service: Load and Lifetime Testing

It is important to perform load and lifetime tests on any service being put in to production. Load tests are used to
determine how the service behaves, and eventually fails, under load while lifetime tests determine how the service
behaves over a prolonged period of time with average load.

Note, this testing framework used here was actually developed by the Shibboleth team for testing their software but it
allows other test packs to be installed so it can also be used in testing this service.

8.5.1 Testing Framework Basics

Requirements

• Unix OS based machine(s)

• Subversion client (necessary in order to download the framework)

• Java 1.5

Downloading and Installing the Framework

1. Checkout the base testing framework. The resulting grinder-framework directory will be known a
GF_HOME throughout the rest of this document.

• svn co https://svn.middleware.georgetown.edu/shib-extension/java-loadtest/trunk/grinder-framework
grinder-framework

2. Within _GFHOME/test checkout the Argus test packs

94 Chapter 8. Legacy Pages from Twiki site

mailto:argus-support@cern.ch
https://twiki.cern.ch/twiki/bin/view/EGEE/AuthorizationFramework
http://shibboleth.internet2.edu
http://subversion.tigris.org/

Argus Documentation, Release 1.6

• svn co http://svnweb.cern.ch/guest/glxa/loadtests/pepcli-authz
pepcli-authz

• svn co http://svnweb.cern.ch/guest/glxa/loadtests/pepcli-multiauthz
pepcli-multiauthz

• svn co http://svnweb.cern.ch/guest/glxa/loadtests/pepj-authz
pepj-authz

Installation is now complete.

Running the Framework

The load testing framework is composed of two parts, an agent and a console. The agent performs the actual work
while the console, a GUI application, collects the results from agents and displays some metrics based on those results

To run the console execute the GF_HOME/bin/console.sh command. This will start the console which will listen
on port 6372 for agent results. Be sure that this port is accessible to the agents you start.

To run the console execute the GF_HOME/bin/agent.sh test_name command. The name of the test is de-
pendent on which test you will run and is given in the documentation for those tests. You can install agents on more
than one machine and have them report back to a single client. This is useful if one agent machine is not capable of
generating enough load.

Common Configuration Options

Each test package contains a test.properties file that contains configuration information for the given test. The
later half of these options are Grinder specific properties. In most cases you’ll need to change the following properties.

Property
Name

Value

grinder.consoleHostThe IP address of the machine on which the console is running
grinder.processesNumber of grinder processes to run. Should be equal to the number of CPU cores on the agent

machine.
grinder.threadsNumber of unique clients, per process, that will connect to the service
grinder.runs Number of times each client will connect to the service, 0 (zero) means to keep going until the

console indicates the test should be stopped. Using a value of 1 (one) is useful for testing that your
configuration is correct.

8.5.2 PEPCLI Test

This test uses the C language PEP CLI to issue basic authorization requests. It a good test to run if you are trying get
measurements for applications which do not maintain state between requests (e.g. a new client is created for every
request).

Test Name: pepcli-authz

8.5. Authorization Service: Load and Lifetime Testing 95

Argus Documentation, Release 1.6

Configuration Options

Property Name Value Required
pepcli.bin The path to the pepcli binary. Yes
pepcli.pepds A space separated list of PEPd endpoints Yes
pepcli.certchain Path, relative to GF_HOME, to the certchain used to identify the subject or

the request
Yes

pepcli.resourceid The resource ID used within the request One is
required.

pep-
cli.resourceid.prefix

Prefix added to the grinder-agent-name to create the resource ID used in
the request

^

pepcli.actionid The action ID used within the request One is
required.

pep-
cli.actionid.prefix

Prefix added to the grinder-agent-run-number to create the resource ID
used in the request

^

pepcli.timeout The connection timeout in seconds No, defaults
to 30

8.5.3 PEPCLI Test

This test uses the C language PEP CLI to issue multiple basic authorization requests. It a good test to run if you are
trying get measurements for applications which do not maintain state between requests (e.g. a new client is created for
every request).

Test Name: pepcli-multiauthz

Configuration Options

Property Name Value Required
pepcli.bin The path to the pepcli binary. Yes
pepcli.pepds A space separated list of PEPd endpoints Yes
pepcli.timeout The connection timeout in seconds No, defaults to 30
pepcli.tests A set of test inputs. See below for format. Yes

Test Input Format

The test import format is as follows:

[\
['ce1', 'submit', '/home/jsmith/.globus/usercert.pem', 'Permit'], \
['ce2', 'submit', '/home/jsmith/.globus/usercert.pem', 'Deny'], \
['ce3', 'submit', '/home/jsmith/.globus/usercert.pem', 'Not Applicable'],\

]

The property value is contained in matching ‘[’ and ‘]’ brackets. Then each test individual test scenario is contained
with matching ‘[’ and ‘]’. Each testing scenario has four comma-separated values: the resource ID, action ID, and
certificate chain used in the request and then the expected outcome. Each test scenario is also comma-separated. The
use of the ‘\’ character can be used to indicate that the property value continues on to the next line.

96 Chapter 8. Legacy Pages from Twiki site

Argus Documentation, Release 1.6

8.5.4 PEP-J Test

This test uses the Java language PEP CLI to issue authorization requests. It is a good test to run if you are trying to get
measurements for application which maintain state between requests (e.g. a single client is used for multiple requests).

Test Name: pepj-authz

Configuration Option

| Property Name | Value | Required | | authz.client.config | Path to the client configuration file. Relative paths are
relative to GF_HOME. | Yes |

%META:TOPICINFO{author=”joel_2ecasutt_40cern_2ech” date=”1320850921” format=”1.1” version=”1.7”}%
%META:TOPICPARENT{name=”AuthorizationFramework”}%

8.6 Authorization Services Testing Summary

8.6.1 Hardware Description

For the perfomance and aging tests, we installed:

• EMI-1 Argus 1.3 (PAP, PDP and PEP Server):

– 1 Xeon CPU 2.33GHz (Dual Core)

– 5 GB RAM

• PEP client pepcli:

– 4 hosts running the Grinder framework

Update: Results for the 1.3.1 update using the same Hardware

There is a significant drop in memory consumption coming with the 1.3.1 update for the pepd and the pdp server. Find
some load test using those Versions below.

8.6.2 Performance Tests

The performance testing of the Authorization Services was done using the hardware described above. The setup of
the test was basically the same as described here, using the following options. Each agent (host running grinder-
framework) opens two worker, and each worker opens 5 threads. Therefore a maximum of 40 (4*2*5) simultaneous
requests are achieved.

Test Description (SSL enabled)

This is the most common case, since the default configuration with YAIM results in a PEPd with SSL enabled

On the Argus Server

The default configuration was used, only the cache-size was lowered to 200 requests

• pepd.ini: maximumCachedResponses = 200

The obligations needed for this test were added to the PAP

• pap-admin ap permit subject=”CN=Joel Casutt D88E5396,O=SWITCH,DC=slcs,DC=switch,DC=ch” –action
“submit” –resource “ce1_.*”

8.6. Authorization Services Testing Summary 97

https://twiki.cern.ch/twiki/bin/view/EGEE/AuthZLLT

Argus Documentation, Release 1.6

• pap-admin ap deny subject=”CN=Joel Casutt D88E5396,O=SWITCH,DC=slcs,DC=switch,DC=ch” –action
“submit” –resource “ce2_.*”

The Test-Scripts

To assure that not only cached requests are used by the PEPd, but that the PEPd also sends requests to the PDP, more
than 200 different requests need to be defined in the properties file. This can easily be done by changing the resource
(e.g. ce1_100, ce1_101, ...)

Results and Metrics

• Test ran for about 16h without interruption

• 1‘698‘886 authorization requests processed

• 30 requests per second sustained

• 1340 ms average round trip time (pepcli -> PEPd (-> PDP -> PEPd) -> pepcli)

• Memory usage of the PEPd during the load-test:
 <img src=”%ATTACHURLPATH%/PEP-memory-
usage.png” alt=”PEP-memory-usage.png” width=‘598’ height=‘233’ />

• Memory usage of the PDP during the load-test:
 <img src=”%ATTACHURLPATH%/PDP-memory-
usage.png” alt=”PDP-memory-usage.png” width=‘596’ height=‘234’ />

Results and Metrics for the 1.3.1-update

• Test ran for about 63h without interruption

• ~6.9 M authorization requests processed

• 30 requests per second sustained

• 900 ms average round trip time (pepcli -> PEPd (-> PDP -> PEPd) -> pepcli)

• Requests per second during the load test for the 1.3.1 update:
 <img
src=”%ATTACHURLPATH%/requests_per_second_1.3.1.png” alt=”requests_per_second_1.3.1.png”
width=‘580’ height=‘205’ />

• Memory usage of the pdp during the load test for the 1.3.1 update:

 <img src=”%ATTACHURLPATH%/pdp_memory_consumption_1.3.1.png”
alt=”pdp_memory_consumption_1.3.1.png” width=‘596’ height=‘232’ />

• Memory usage of the pepd during the load test for the 1.3.1 update:

 <img src=”%ATTACHURLPATH%/pepd_memory_consumption_1.3.1.png”
alt=”pepd_memory_consumption_1.3.1.png” width=‘596’ height=‘234’ />

8.6.3 Aging Tests

This test was done analogue to the performance test, but with only one Agent starting one worker starting one thread.
This resulted in about 10 requests per second.

Test Description

The test was done using the same options as the performance test.

Results and Metrics

• Test ran for about 43h without interruption

• 1‘486‘711 authorization requests processed

98 Chapter 8. Legacy Pages from Twiki site

Argus Documentation, Release 1.6

• 10 requests per second sustained

• 101 ms average round trip time (pepcli -> PEPd (-> PDP -> PEPd) -> pepcli)

• Memory usage of the PDP during the long-test:
 <img src=”%ATTACHURLPATH%/PDP-memory-
usage-long-test.png” alt=”PDP-memory-usage-long-test.png” width=‘596’ height=‘235’ />

• Memory usage of the PEPd during the long-test:
 <img src=”%ATTACHURLPATH%/PEP-memory-
usage-long-test.png” alt=”PEP-memory-usage-long-test.png” width=‘599’ height=‘233’ />

%META:TOPICINFO{author=”joel_2ecasutt_40cern_2ech” date=”1322576072” format=”1.1” version=”1.4”}%
%META:TOPICPARENT{name=”AuthorizationFramework”}%

8.7 Authorization Services Testing Summary

8.7.1 Hardware Description

For the perfomance and aging tests, we installed:

• EMI-1 Argus 1.4.0 (PAP, PDP and PEP Server):

– 1 Xeon CPU 2.33GHz (Dual Core)

– 5 GB RAM

• PEP client pepcli:

– 3 hosts running the Grinder framework

8.7.2 Performance Tests

The performance testing of the Authorization Services was done using the hardware described above. The setup of
the test was basically the same as described here, using the following options. Each agent (host running grinder-
framework) opens two worker, and each worker opens 2 threads. Therefore a maximum of 12 (3*2*2) simultaneous
requests are achieved.

Test Description (SSL enabled)

This is the most common case, since the default configuration with YAIM results in a PEPd with SSL enabled

On the Argus Server

The default configuration was used The policies needed for this test were added to the PAP

• pap-admin ap permit pfqan=”/dteam” –action “submit” –resource “ce1_.*”

• pap-admin ap deny pfqan=”/dteam” –action “submit” –resource “ce2_.*”

while the star denotes a number between 1 and 500, so in total the pap was loaded with 1‘000 policies each one
containing a rule and a obligation

The Test-Scripts

To assure that not only cached requests are used by the PEPd, but that the PEPd also sends requests to the PDP, more
than 200 different sets of Action/Resource/Obligation have been defined in the properties file. This can easily be done
by changing the resource (e.g. ce1_100, ce1_101, ...). More than that 100 certificates issued by the ARC instant online
CA were randomly combined with those sets, leading to roughly 1‘000 different possible requests.

Results and Metrics

8.7. Authorization Services Testing Summary 99

https://twiki.cern.ch/twiki/bin/view/EGEE/AuthZLLT
https://arc-emi.grid.upjs.sk/instantCA/
https://arc-emi.grid.upjs.sk/instantCA/

Argus Documentation, Release 1.6

• Test ran for about 26.5h without interruption

• 4‘078‘768 authorization requests processed

• 43 requests per second sustained

• 274 ms average round trip time (pepcli -> PEPd (-> PDP -> PEPd) -> pepcli)

• Memory consumption of the 1.4.0 pdp during a load-test:
 <img
src=”%ATTACHURLPATH%/pdp_memory_consumption_1.4.1.png” alt=”pdp_memory_consumption_1.4.1.png”
width=‘596’ height=‘235’ />

• Memory consumption of the 1.4.0 pepd during a load-test:
 <img src=”%ATTACHURLPATH%/pepd_memory_consumption_1.4.1.png”
alt=”pepd_memory_consumption_1.4.1.png” width=‘598’ height=‘237’ />

• Average requests per second during the load-test:
 <img src=”%ATTACHURLPATH%/requests_per_second_1.4.1.png”
alt=”requests_per_second_1.4.1.png” width=‘583’ height=‘210’ />

8.7.3 Aging Tests

This test was done analogue to the performance test, but with only one Agent starting one worker starting one thread.
This resulted in about 9 requests per second.

Test Description

The test was done using the same options as the performance test.

Results and Metrics

• Test ran for about 140h without interruption

• 4‘951‘677 authorization requests processed

• 9 requests per second sustained

• 97.5 ms average round trip time (pepcli -> PEPd (-> PDP -> PEPd) -> pepcli)

• Memory consumption of the 1.4.0 pdp during a aging-test:

<img src=”%ATTACHURLPATH%/aging_test_pdp_mem_consumption_1.4.1.png”
alt=”aging_test_pdp_mem_consumption_1.4.1.png” width=‘603’ height=‘241’ />

• Memory consumption of the 1.4.0 pepd during a aging-test:

<img src=”%ATTACHURLPATH%/aging_test_pepd_mem_consumption_1.4.1.png”
alt=”aging_test_pepd_mem_consumption_1.4.1.png” width=‘604’ height=‘228’ />

• Average requests per second during the aging-test:
 <img
src=”%ATTACHURLPATH%/aging_test_requests_per_second_1.4.1.png” alt=”aging_test_requests_per_second_1.4.1.png”
width=‘587’ height=‘216’ />

%META:TOPICINFO{author=”joel_2ecasutt_40cern_2ech” date=”1322731035” format=”1.1” reprev=”1.2” ver-
sion=”1.2”}% %META:TOPICPARENT{name=”AuthorizationFramework”}%

100 Chapter 8. Legacy Pages from Twiki site

Argus Documentation, Release 1.6

8.8 Authorization Services Testing Summary

8.8.1 Hardware Description

For the perfomance and aging tests, we installed:

• EMI-1 Argus 1.4.0 (PAP, PDP and PEP Server):

– 1 QEMU Virtual CPU 2.66GHz

– 384 MB RAM

• PEP client pepcli:

– 3 hosts running the Grinder framework

8.8.2 Performance Tests

The performance testing of the Authorization Services was done using the hardware described above. The setup of
the test was basically the same as described here, using the following options. Each agent (host running grinder-
framework) opens two worker, and each worker opens 2 threads. Therefore a maximum of 12 (3*2*2) simultaneous
requests are achieved.

Test Description (SSL enabled)

This is the most common case, since the default configuration with YAIM results in a PEPd with SSL enabled

On the Argus Server

The default configuration was used The policies needed for this test were added to the PAP

• pap-admin ap permit pfqan=”/dteam” –action “submit” –resource “ce1_.*”

• pap-admin ap deny pfqan=”/dteam” –action “submit” –resource “ce2_.*”

while the star denotes a number between 1 and 500, so in total the pap was loaded with 1‘000 policies each one
containing a rule and a obligation

The Test-Scripts

To assure that not only cached requests are used by the PEPd, but that the PEPd also sends requests to the PDP, more
than 200 different sets of Action/Resource/Obligation have been defined in the properties file. This can easily be done
by changing the resource (e.g. ce1_100, ce1_101, ...). More than that 100 certificates issued by the ARC instant online
CA were randomly combined with those sets, leading to roughly 1‘000 different possible requests.

Results and Metrics

• Test ran for about 42h without interruption

• 4‘362‘423 authorization requests processed

• 28.9 requests per second sustained

• 409 ms average round trip time (pepcli -> PEPd (-> PDP -> PEPd) -> pepcli)

• Memory consumption of the 1.4.0 pdp during a load-test:

<img src=”%ATTACHURLPATH%/load_test_pdp_mem_consumption_1.4.0V.png”
alt=”load_test_pdp_mem_consumption_1.4.0V.png” width=‘598’ height=‘223’ />

8.8. Authorization Services Testing Summary 101

https://twiki.cern.ch/twiki/bin/view/EGEE/AuthZLLT
https://arc-emi.grid.upjs.sk/instantCA/
https://arc-emi.grid.upjs.sk/instantCA/

Argus Documentation, Release 1.6

• Memory consumption of the 1.4.0 pepd during a load-test:

<img src=”%ATTACHURLPATH%/load_test_pepd_mem_consumption_1.4.0V.png”
alt=”load_test_pepd_mem_consumption_1.4.0V.png” width=‘599’ height=‘223’ />

• Average requests per second during the load-test:
 <img src=”%ATTACHURLPATH%/load_test_requests_per_second_1.4.0V.png”
alt=”load_test_requests_per_second_1.4.0V.png” width=‘580’ height=‘208’ />

8.8.3 Aging Tests

This test was done analogue to the performance test, but with only one Agent starting one worker starting one thread.
This resulted in about 9 requests per second.

Test Description

The test was done using the same options as the performance test.

Results and Metrics

• Test ran for about 190h without interruption

• 7‘332‘606 authorization requests processed

• 10.7 requests per second sustained

• 89.1 ms average round trip time (pepcli -> PEPd (-> PDP -> PEPd) -> pepcli)

• Memory consumption of the 1.4.0 pdp during a aging-test:

<img src=”%ATTACHURLPATH%/aging_test_pdp_mem_consumption_1.4.0V.png”
alt=”aging_test_pdp_mem_consumption_1.4.0V.png” width=‘596’ height=‘233’ />

• Memory consumption of the 1.4.0 pepd during a aging-test:

<img src=”%ATTACHURLPATH%/aging_test_pepd_mem_consumption_1.4.0V.png”
alt=”aging_test_pepd_mem_consumption_1.4.0V.png” width=‘597’ height=‘234’ />

• Average requests per second during the aging-test:
 <img
src=”%ATTACHURLPATH%/aging_test_requests_per_second_1.4.0V.png” alt=”aging_test_requests_per_second_1.4.0V.png”
width=‘580’ height=‘206’ />

%META:TOPICINFO{author=”ad968f62f612332eff6b” date=”1257252646” format=”1.1” reprev=”1.2” ver-
sion=”1.2”}% %META:TOPICPARENT{name=”AuthorizationFramework”}%

8.9 Argus: Quick Start: Manual Installation

8.9.1 Prerequisites

In order to run the Argus service you will need the following:

• a working Java 5 or better installation. Use java -version to determine your Java version.

• a recent version of openssl (>0.9.7) installed on your system

• LCG trusted Certificate Autorities certificates installed. In SL4 and SL5, the lcg-CA package provides those
certificates.

• a valid, PEM encoded X509 server certificate issued by a trusted CA.

102 Chapter 8. Legacy Pages from Twiki site

Argus Documentation, Release 1.6

8.9.2 Installation

The Argus service is composed of three components, the PAP, PDP, and PEPd. The following steps provide instructions
for installing each component.

PAP Installation

1 Download the latest version version of the software. 1 Expand the downloaded archive to the /opt/argus direc-
tory.

• This resulting installation directory /opt/argus/pap will be referred to, in the documenta-
tion, as PAP_HOME 1 Export the environment variable PAP_HOME=/opt/argus/pap 1 Add the
/opt/argus/pap/bin to your PATH in order to use the PAP pap-admin command

PDP Installation

1. Download the latest version version of the software. 1 Expand the downloaded archive in to the /opt/argus
directory.

• This resulting installation directory /opt/argus/pdp will be referred to, in documentation, as
PDP_HOME

PEPd Installation

1 Download the latest version version of the software. 1 Expand the downloaded archive in to the /opt/argus
directory.

• The resulting installation directory /opt/argus/pepd will be referred to, in documentation, as
PEPD_HOME

8.9.3 Starting/Stop the Services

To start/stop the PAP you can use the command /opt/argus/pap/bin/pap-standalone start|stop.

To start/stop the PDP you can use the command /opt/argus/pdp/bin/pdpctl.sh start|stop.

To start/stop the PEPd you can use the command /opt/argus/pepd/bin/pepdctl.sh start|stop.

You should always start the PAP before the PDP or else the PDP will not be to retrieve its policy from the PAP.

Installation is now complete, proceed to configuring the Argus service.

%META:TOPICINFO{author=”ad968f62f612332eff6b” date=”1271340916” format=”1.1” version=”1.7”}%
%META:TOPICPARENT{name=”AuthzQSYumYaimInstall”}%

8.10 Argus: Quick Start: Site Policy Setup

8.10.1 Policy Basics

A site’s policies are maintained using the command /opt/argus/pap/bin/pap-admin. Initially the PAP
contains an empty policy for the site so no one will be permitted to do anything. The command pap-admin
list-policies lists policies, in the simplified policy language notation, currently active in the PAP.

8.10. Argus: Quick Start: Site Policy Setup 103

http://etics-repository.cern.ch:8080/repository/download/registered/org.glite/org.glite.authz.pap-service/
http://etics-repository.cern.ch:8080/repository/download/registered/org.glite/org.glite.authz.pdp
http://etics-repository.cern.ch:8080/repository/download/registered/org.glite/org.glite.authz.pep-daemon/

Argus Documentation, Release 1.6

The policies you add will be evaluated from most to least recent and the first policy that matches is the result returned
by Argus. So, if you added a policy that would deny a user and then added one that would permit the user the result of
an authorization request will be permit since the permit policy is most recent. While not covered here, the exhaustive
PAP command line interface reference provides information for how to re-order policies.

To begin, you will need to create permit policies, for individuals users, VOs, and FQANs, which reflect your site’s
access policy. Each of the commands listed require a resource ID and action ID which are deployment and application
specific, respectively. These ID were described in the introduction to the Argus system. For the purposes of this
quick-start we’ll use http://example.org as the resource ID and http://example.org/action as the
action ID. At this point you do not need to worry about what the correct values would be for a production deployment.

NOTE, as you change policies you will need to restart the PDP in order to force it to reread the policy from the PAP.
It would do this by default but only after a couple of hours. Restarting forces it do this immediately.

Permit by User

Command: pap-admin add-policy permit --resource "RESOURCE_ID" --action
"ACTION_ID" dn="USER_DN"

The provided USER_DN must be in the RFC2253 standard form, not the proprietary format used by OpenSSL by
default. To get the standard form of the DN you can use the command openssl x509 -noout -nameopt
RFC2253 -subject -in CERT_PATH

Here’s an example that permits a user identified by their DN: pap-admin add-policy permit --resource
"http://example.org" --action "http://example.org/action" dn="CN=John
Smith,OU=Standard Commercial Certificate,O=SWITCH,L=Zuerich,ST=Zuerich,C=CH"

Permit by VO

Command: pap-admin add-policy permit --resource "RESOURCE_ID" --action
"ACTION_ID" vo="VO"

The name of a VO is the string that appears between, but no including, the first two forward slashes (‘/’) of an FQAN.

Here’s an example that permits a user identified by their VO: pap-admin add-policy permit --resource
"http://example.org" --action "http://example.org/action" vo="atlas"

Permit by Primary FQAN

Command: pap-admin add-policy permit --resource "RESOURCE_ID" --action
"ACTION_ID" pfqan="FQAN"

The provided FQAN must be in full canonical (long) form (e.g. /atlas/Role=Production/Capability=NULL or /at-
las/Role=NULL/Capability=NULL). You may use Java regular expression in this string.

Here’s an example that permits a user identified by their primary FQAN: pap-admin add-policy
permit --resource "http://example.org" --action "http://example.org/action"
pfqan="/atlas/Role=Production/.*"

Permit by Secondary FQAN

Command: pap-admin add-policy permit --resource "RESOURCE_ID" --action
"ACTION_ID" fqan="FQAN"

The provided FQAN must be in full canonical (long) form (e.g. /atlas/Role=Production/Capability=NULL or /at-
las/Role=NULL/Capability=NULL). You may use Java regular expression in this string.

104 Chapter 8. Legacy Pages from Twiki site

http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html

Argus Documentation, Release 1.6

Here’s an example that permits a user identified by their secondary FQAN: pap-admin add-policy
permit --resource "http://example.org" --action "http://example.org/action"
pfqan="/atlas/higgs/Role=NULL/Capability=NULL"

Explicit Banning

At times you may wish to deny a specific user, FQAN, or VO. As you may have guessed by looking at the commands
above, you can create deny policies by changing the permit argument to deny.

Here are some examples:

pap-admin add-policy deny --resource "http://example.org" --action
"http://example.org/action" pfqan="/atlas/higgs/Role=NULL/Capability=NULL"

pap-admin add-policy deny --resource "http://example.org" --action
"http://example.org/action" vo="cms"

Removing Policies

The command pap-admin remove-policy POLICY_ID will remove an existing policy from the PAP. The
POLICY_ID is the ID for the policy shown by the pap-admin list-policies --show-all-ids command.

8.10.2 Loading and Testing Policies

Now that you have some basic policy commands you should experiment with creating and testing policies.

To test the policies you can use the command pepcli. This debugging tool can be used in two different ways. First
you can supply it the cert of a user or you can mock up a request by specifying a subject DN and primary and second
FQANs. See the pepcli documentation for complete list of options or use the examples below.

This command provides the result that the user, represented by the given certificate, would receive: pepcli --pepd
!http://127.0.0.1:8154/authz --resourceid "http://example.org" --actionid
"http://example.org/action" --certchain CERT_PATH. The certificate may be an end-entity
certificate, a plain proxy certificate, or a proxy certificate with VOMS extensions.

This command allows you to create a request containing a specific user DN, primary FQAN (the first one listed),
and secondary FQANs (subsequent ones listed): pepcli --pepd !http://127.0.0.1:8154/authz
--resourceid "http://example.org" --actionid "http://example.org/action"
--subjectid USER_DN --fqan PRIMARY_FQAN --fqan SECONDARY_FQAN --fqan
SECONDARY_FQAN

So, for example add a policy to allows people with the primary FQAN of
/atlas/higgs/Role=NULL/Capability=NULL to be permitted using the following com-
mand pap-admin add-policy permit --resource "http://example.org" --action
"http://example.org/action" pfqan="/atlas/higgs/Role=NULL/Capability=NULL".

Then test the policy using the pepcli command pepcli --pepd !http://127.0.0.1:8154/authz
--resourceid "http://example.org" --actionid "http://example.org/action"
--subjectid "CN=John Smith,OU=Standard Commercial Certificate,O=SWITCH,L=Zuerich,ST=Zuerich,C=CH"
--fqan "/atlas/higgs/Role=NULL/Capability=NULL". The result should be a permit.

8.10.3 Cleaning Up

Before you go further be sure to clean out of your test policies from the PAP. You do this by removing select policies
as shown above or you may use the command pap-admin remove-all-policies to remove all policies from

8.10. Argus: Quick Start: Site Policy Setup 105

Argus Documentation, Release 1.6

the PAP. Be sure to restart your PDP as well so that it picks up your new policy set.

—- You are now done with this quick-start guide. At this point you should have a functioning Argus service and be
able to add/remove basic policies from your site. It is recommended that you

%META:TOPICINFO{author=”chad_2elajoie_40switch_2ech” date=”1257249650” format=”1.1” version=”1.1”}%
%META:TOPICPARENT{name=”AuthzQSManInstall”}%

8.11 Argus: Quick Start: Manual Configuration

TODO

Configuration is now complete, proceed to setting up your site policies.

%META:TOPICINFO{author=”joel_2ecasutt_40cern_2ech” date=”1311164000” format=”1.1” reprev=”1.17” ver-
sion=”1.17”}% %META:TOPICPARENT{name=”AuthorizationFramework”}%

8.12 Quick Start: glite 3.2 Argus Installation

8.12.1 Installation and Configuration

The PAP, PDP, and PEPd are bundled together as the gLite node type glite-ARGUS.

YUM Repository

Copy the http://grid-deployment.web.cern.ch/grid-deployment/glite/repos/3.2/glite-ARGUS.repo repository file into
your local /etc/yum.repos.d directory.

Packages Installation

To install and initially configure the service do the following: 1 Install the EUGridPMA trust anchors bundle:

yum install lcg-CA 1 If not already installed, install the Java VM OpenJDK 1.6:
 yum install
java-1.6.0-openjdk 1 Install the glite-ARGUS metapackage:
 yum install glite-ARGUS 1 In your
YAIM site-info.def configuration set at least the following variables:

• the ARGUS_HOST property to the hostname of the machine on which you are installing

• the PAP_ADMIN_DN property to the subject DN of your user certificate. Allow the use the pap-admin
command

• the USERS_CONF, GROUP_CONF, and VOS property to their appropriate values for your site 1 Configure the
ARGUS_server node type with YAIM:
 yaim -c -s site-info.def -n ARGUS_server

Example Configuration

Example site-info.def for the ARGUS_server node type:

106 Chapter 8. Legacy Pages from Twiki site

http://grid-deployment.web.cern.ch/grid-deployment/glite/repos/3.2/glite-ARGUS.repo

Argus Documentation, Release 1.6

#
glite-ARGUS hostname
#
ARGUS_HOST=vesta.switch.ch

users and groups
USERS_CONF=/opt/glite/yaim/etc/users.conf
GROUPS_CONF=/opt/glite/yaim/etc/groups.conf

Supported VOs
VOS="dteam"

VO_DTEAM_VOMS_CA_DN="'/DC=ch/DC=cern/CN=CERN Trusted Certification Authority' '/DC=ch/DC=cern/CN=CERN Trusted Certification Authority' '/DC=ch/DC=cern/CN=CERN Trusted Certification Authority'"
VO_DTEAM_VOMSES="'dteam lcg-voms.cern.ch 15004 /DC=ch/DC=cern/OU=computers/CN=lcg-voms.cern.ch dteam 24' 'dteam voms.cern.ch 15004 /DC=ch/DC=cern/OU=computers/CN=voms.cern.ch dteam 24' 'dteam lxbra2309.cern.ch 15002 /DC=ch/DC=cern/OU=computers/CN=lxbra2309.cern.ch dteam 24'"

PAP administrator DN
PAP_ADMIN_DN="/DC=org/DC=acme/CN=John Doe"

At this point, you should have a running PAP, PDP, and PEP daemon.

8.12.2 Operation Environment

You should now have Argus installed.

Directories

There a few directories that you should be aware of:

• /opt/argus/pap contains the PAP component of Argus

• /opt/argus/pdp contains the PDP component of Argus

• /opt/argus/pepd contains the PEPd component of Argus

• /etc/grid-security/certificates contains the CAs trusted by Argus

• /etc/grid-security/grid-mapfile contains the mappings from DN/FQANs to local user accounts

• /etc/grid-security/groupmapfile contains the mappings from FQANs to local groups

• /etc/grid-security/gridmapdir contains grid user to local user account mappings

• /etc/grid-security/vomsdir contains the VOMS servers trusted by Argus

Note, if you have an existing site and wish to use your existing account mappings you can move your
existing mappings over to the Argus host. Simply tar your existing mappings (tar -cf gridmap.tar
/etc/grid-security/gridmapdir) and then transfer them over the Argus host and untar them (tar -xf
gridmap.tar).

Endpoint URL

Argus is a network service. Like other network services you should ensure that your network settings only allow
anticipated clients communicate with the service.

• Argus 1.1 enables by default client authentication on the service endpoint, therefore the endpoint URL scheme
is now HTTPS.

• Client applications must be able to contact the service port 8154

8.12. Quick Start: glite 3.2 Argus Installation 107

Argus Documentation, Release 1.6

• Example Argus 1.1 endpoint URL (with client authN): https://argus.example.org:8154/authz

• All other ports (8150-8153) should only be accessible within the Argus service host itself.

8.12.3 Starting/Stopping the Services

To start/stop the PAP you can use the command /etc/init.d/pap-standalone start|stop.

To start/stop the PDP you can use the command /etc/init.d/pdp start|stop. You can also force a reload
of the policies, retrieved from the PAP, with /etc/init.d/pdp reloadpolicy.

To start/stop the PEPd you can use the command /etc/init.d/pepd start|stop. You can also clear the
responses cache with /etc/init.d/pepd clearcache.

You should always start the PAP before the PDP or else the PDP will not be to retrieve its policy from the PAP.

Installation is now complete, proceed to setting up your site policies.

8.12.4 Global Banning Configuration

The following are the required steps to make your Argus server import the global grid banning policies. These policies
are maintained by OSCT / EGI CSIRT. The server is located at CERN.

Notice that in following the steps below you will be trusting the global banning server and its policies, so that e.g.
users banned by the OSCT / EGI CSIRT will also be rejected at your site as a result.

The pap-admin command is normally installed in /opt/argus/pap/bin

Add the Global Banning PAP server from CERN as a remote PAP:

pap-admin add-pap centralbanning argus.cern.ch "/DC=ch/DC=cern/OU=computers/CN=argus.cern.ch"

The CERN PAP is now listed but is by default still disabled.

pap-admin enable-pap centralbanning

The CERN PAP is now enabled.

pap-admin set-paps-order centralbanning default

The CERN PAP policies are now parsed before the local policies, so that e.g. a user banned by OSCT is immediately
rejected. This step is important as only with this order can black listing work.

pap-admin refresh-cache centralbanning

The local pap cache, comprising also the CERN policies, is refreshed and the new policies are made available. The
policies are then fetched automatically by the server every polling interval seconds or manually when the a
refresh-cache command is sent to the server.

%META:TOPICMOVED{by=”ad968f62f612332eff6b” date=”1271340916” from=”EGEE.AuthzQSYaimInstall”
to=”EGEE.AuthzQSYumYaimInstall”}%

108 Chapter 8. Legacy Pages from Twiki site

CHAPTER 9

Argus Service Deployment for EMI

Argus Service Reference Card: https://twiki.cern.ch/twiki/bin/view/EMI/ArgusSRC

9.1 Requirements

9.1.1 Platform

• For EMI-3 the supported platforms are Debian6/x86_64, and SL5/x86_64 and SL6/x86_64 with the EPEL
repository enabled.

• For EMI-2 the supported platforms are SL5/x86_64 and SL6/x86_64 with the EPEL repository enabled.

• For EMI-1 the supported platform is SL5/x86_64 with the EPEL repository enabled.

9.1.2 Host Certificate

The Argus services require a valid host certificate. The key pair is typically installed in
/etc/grid-security/hostcert.pem and /etc/grid-security/hostkey.pem

9.2 Installation with YUM

The Argus Authorization Service is a bundle of 3 services (PAP, PDP and PEP Server) and is available in the EMI
repository. The Argus metapackage should be installed with YUM.

9.2.1 Install the EGI IGTF Bundle

If not already present on your host, install the EGI IGTF trust anchors. More information available online:
https://wiki.egi.eu/wiki/EGI_IGTF_Release

• Install the EGI IGTF trust anchors with YUM

9.2.2 Install fetch-crl

If not already present on your host, install the fetch-crl cron job (from the EPEL repository), run it once, and
enable the cron job:

109

https://twiki.cern.ch/twiki/bin/view/EMI/ArgusSRC
http://fedoraproject.org/wiki/EPEL
http://fedoraproject.org/wiki/EPEL
http://fedoraproject.org/wiki/EPEL
https://wiki.egi.eu/wiki/EGI_IGTF_Release
https://wiki.egi.eu/wiki/EGI_IGTF_Release#Using_YUM_package_management
http://fedoraproject.org/wiki/EPEL

Argus Documentation, Release 1.6

install
yum install fetch-crl
run it immediately (it can take some time...)
/usr/sbin/fetch-crl
enable the periodic fetch-crl cron job
/sbin/chkconfig fetch-crl-cron on
/sbin/service fetch-crl-cron start

9.2.3 Install the EMI Repository

If not already configured on your host, install the EMI repositories package as described in the EMI generic installation
and configuration guide for EMI 1 or EMI 2, or EMI 3.

And update the YUM cache: yum makecache

9.2.4 Install the Argus Metapackage

The emi-argus metapackage bundles the 3 Argus services: PAP, PDP and PEP Server

Therefore, the emi-argus metapackage is the simplest way to install the Argus Authorization Services (PAP, PDP
and PEP Server) on your host.

Use YUM to install the Argus metapackage: yum install emi-argus

At this point all 3 Argus services (PAP, PDP and PEP server) are installed on your host. You must now continue with
the Argus service configuration with YAIM.

9.3 Update with YUM

Argus and its components are packages in the EMI and UMD repositories, and therefore automatically updated if a
new version is available and yum update is executed. The updating process however is stopping the Argus services
(PAP, PEPd and PDP). To get Argus back to work after an update it is recommended to rerun Yaim and/or restart the
services.

Please make sure that your system does not use the automated yum updating service,
since this may lead to a stopped Argus server in case of a unnoticed update.

9.4 Configuration with YAIM

The ARGUS_server node type is available to configure the Argus service with YAIM.

9.4.1 Argus YAIM Configuration Variables

Description of all the available Argus YAIM configuration variables: https://twiki.cern.ch/twiki/bin/view/EGEE/ArgusEMIYaimConfiguration

9.4.2 Mandatory YAIM Variables

• ARGUS_HOST Fully qualified host name (FQHN) of the Argus host

110 Chapter 9. Argus Service Deployment for EMI

https://twiki.cern.ch/twiki/bin/view/EMI/GenericInstallationConfigurationEMI1
https://twiki.cern.ch/twiki/bin/view/EMI/GenericInstallationConfigurationEMI2
https://twiki.cern.ch/twiki/bin/view/EMI/GenericInstallationConfigurationEMI3
https://twiki.cern.ch/twiki/bin/view/EGEE/ArgusEMIYaimConfiguration

Argus Documentation, Release 1.6

• PAP_ADMIN_DN Certificate distinguished name (DN) of the administrator, allowed to use the pap-admin
command

• SITE_NAME BDII site name

• USERS_CONF Absolute location of the users configuration file

• GROUPS_CONF Absolute location of the groups configuration file

• VOS List of supported VO names

• VO_<vo-name>_VOMS_CA_DN VOMS CA DN for each VO name listed in VOS

• VO_<vo-name>_VOMSES VOMS definition for each VO name listed in VOS

The USERS_CONF and GROUPS_CONF configuration files MUST be the same on the Argus host as on the client
host (CREAM, WMS, gLExec, ...). On successful authorization, the Argus PEP Server is configured to determine the
user/group mapping (pool account) for this authorization and send it the client. Therefore, the client must be able to
map the resulting user mapping received with the authorization decision.

9.4.3 Argus site-info.def Configuration

Your site-info.def for Argus must contain at least the following variable:

BDII site name
SITE_NAME=MySiteName

Argus service hostname
ARGUS_HOST=argus.example.org

PAP administrator DN allowed to use 'pap-admin' command
PAP_ADMIN_DN="/DC=org/DC=acme/CN=John Doe"

Users and Groups definition for grid and group mapfile
USERS_CONF=/opt/glite/yaim/examples/users.conf
GROUPS_CONF=/opt/glite/yaim/examples/groups.conf

Supported VOs
VOS="dteam"

VO_DTEAM_VOMSES="'dteam voms.hellasgrid.gr 15004 /C=GR/O=HellasGrid/OU=hellasgrid.gr/CN=voms.hellasgrid.gr dteam' 'dteam voms2.hellasgrid.gr 15004 /C=GR/O=HellasGrid/OU=hellasgrid.gr/CN=voms2.hellasgrid.gr dteam'"
VO_DTEAM_VOMS_CA_DN="'/C=GR/O=HellasGrid/OU=Certification Authorities/CN=HellasGrid CA 2006' '/C=GR/O=HellasGrid/OU=Certification Authorities/CN=HellasGrid CA 2006'"

See the documentation of all the supported Argus YAIM configuration variables <argus_emi_yaim_configuration>.

9.4.4 Generate Argus Configuration

Run YAIM to generate the Argus configuration for your site: /opt/glite/yaim/bin/yaim -c -s
site-info.def -n ARGUS_server

At this point, the Argus services (PAP, PDP and PEP Server) must be configured, up and running.

9.4. Configuration with YAIM 111

Argus Documentation, Release 1.6

112 Chapter 9. Argus Service Deployment for EMI

CHAPTER 10

Nagios Probes for Argus

A set of Nagios probes for Argus (EMI-2 and EMI-3) are available to monitor the Argus PAP, PDP and PEP Server:

• Argus Nagios Probes Documentation (EMI): https://twiki.cern.ch/twiki/bin/view/EGEE/ArgusEMINagiosProbes

113

https://twiki.cern.ch/twiki/bin/view/EGEE/ArgusEMINagiosProbes

Argus Documentation, Release 1.6

114 Chapter 10. Nagios Probes for Argus

CHAPTER 11

EMIR Publisher for Argus 1.6 (EMI-3)

You can use EMIR-SERP to publish the Argus resource information to EMIR. EMIR-SERP uses the information
already available in the resource BDII and publish it to an EMIR DSR endpoint.

• See the Argus EMIR Configuration to publish the Argus into EMIR:
https://twiki.cern.ch/twiki/bin/view/EGEE/ArgusEMIEmirConfiguration

115

https://twiki.cern.ch/twiki/bin/view/EMI/SERP
https://twiki.cern.ch/twiki/bin/view/EMI/EMIRegistry
https://twiki.cern.ch/twiki/bin/view/EGEE/ArgusEMIEmirConfiguration

Argus Documentation, Release 1.6

116 Chapter 11. EMIR Publisher for Argus 1.6 (EMI-3)

CHAPTER 12

Known Issues

12.1 Timeouts for certificates from CAs that use OCSP

As of late 2013 a few CAs (e.g. the CERN CA) have started using the Online Certificate Status Protocol (OCSP)
in addition to the CRL mechanism to advertise which certificates have been revoked. Some security libraries will
then by default contact the OCSP responder of the CA in real time when a certificate from such a CA needs to be
validated. If that outgoing traffic happens to be blocked, or if the responder is slow or even unreachable, the operation
will eventually time out (see GGUS:105666). Depending on the case at hand, such a timeout need not be a fatal error
in itself, but will at least slow down operations and may therefore cause timeouts downstream (e.g. for CREAM or
gLExec).

12.1.1 Workaround

In EGI and WLCG we do not need OCSP to work at this time, as the CRL mechanism is still deemed sufficient.
Therefore it is reasonable to disable OCSP for the time being and version 1.4.1 of the argus-pdp-pep-common
rpm does that by default. That version was officially released in Argus v1.6.3 as part of EMI-3 Update 27 (2015-06-
10).

12.2 Performance issue with Argus PEP Server (EMI-2, EMI-3, all ver-
sions)

After a large number of authorization requests, the PDP responses caching mechanism in the PEP Server becomes
unstable and the performance of the service deteriorates. It is recommended to completely disable the PDP responses
caching mechanism in the Argus PEP Server.

Additionally, the default memory settings for the Argus PEP Server could be too low for production site. It is recom-
mended to allocate at least 1GB memory.

12.2.1 Workaround

Disabling the caching mechanism

Completely disabling the PDP responses caching mechanism in the PEP Server configuration solves the performance
issue. To disable the cache:

117

http://en.wikipedia.org/wiki/Online_Certificate_Status_Protocol
http://www.eu-emi.eu/releases/emi-3-monte-bianco/updates/-/asset_publisher/5Na8/content/update-27-10-06-2015-v-3-15-3-1#ARGUS_v_1_6_3

Argus Documentation, Release 1.6

1. edit the /etc/argus/pepd/pepd.ini file 2. add the parameter =maximumCachedResponses = 0= in the
[PDP] section (see example) 3. restart PEP Server: /etc/init.d/argus-pepd restart (or increase
the memory settings, then restart)

Example:

[PDP]
pdps = https://chaos.switch.ch:8152/authz
disabling the cache
maximumCachedResponses = 0

Increasing the default memory

Allocating 1GB of memory for the Argus PEP Server solves the performance issue. To increase the default memory:

1. edit the /etc/sysconfig/argus-pepd file 2. set the line PEPD_JOPTS="-Xmx1024M" 3. restart PEP
Server: /etc/init.d/argus-pepd restart

12.3 Problem the EMI-3 update and Argus PEP Server v.1.6.1

Updating the Argus PEP Server to the last EMI-3 update (argus-pep-server-1.6.1) will not always restart the
Argus PEP Server

12.3.1 Workaround

After the update (yum update), restart the Argus PEP Server by hand:

root# /sbin/service argus-pepd restart

12.4 Problem with Argus 1.6 (EMI-3) and fetch-crl

The Argus metapackage emi-argus have no dependency on the fetch-crl cron job. Installing and starting the
Argus services, without having fetch-crl installed, will cause SSL errors when trying to connect to the services.

12.4.1 Workaround

Prior to installing the emi-argus metapackage, install the the fetch-crl package by hand, and run it at least
once:

root# yum install fetch-crl
root# fetch-crl -v

If you have already installed and configured Argus, just install the fetch-crl package by hand, run it at least once,
and restart the Argus services:

root# yum install fetch-crl
root# fetch-crl -v
root# service argus-pap restart
root# service argus-pdp restart
root# service argus-pepd restart

118 Chapter 12. Known Issues

Argus Documentation, Release 1.6

12.5 Problem with Nagios plugins for Argus and TMP directory per-
mission

The nagios-plugins-argus package do not set the correct ownership for the
/var/lib/grid-monitoring/nagios-plugins-argus temp directory. The plugins will throw er-
rors (Permission denied) because the ownership of the directory is not nagios.

12.5.1 Workaround

To fix the temp directory ownership to nagios, please do:

root# yum install nagios-plugins-argus
root# chown -R nagios:nagios /var/lib/grid-monitoring/nagios-plugins-argus

12.6 Problem with Argus 1.5 (EMI-2) and CREAM

Under heavy load the Argus PEP Server (v1.5.1) does not always return a user mapping for a permitted operation,
causing CREAM to throw an error and abort the job. This typically occurs for 10% of the jobs submitted by CREAM.

12.6.1 Workaround

Disabling the PDP responses caching mechanism in the PEP Server configuration solve this issue. To disable the
cache:

1. edit /etc/argus/pepd/pepd.ini 2. add the parameter =maximumCachedResponses = 0= in the [PDP]
section (see example below) 3. restart PEP Server: /etc/init.d/argus-pepd restart

Example:

[PDP]
pdps = https://chaos.switch.ch:8152/authz
disabling the cache
maximumCachedResponses = 0

12.7 Problem with upgrade from Argus 1.4 (EMI-1) to Argus 1.5 (EMI-
2)

When upgrading an previous Argus 1.4 (EMI-1) installation on SL5, you need to re-install Argus 1.5 (EMI-2). This is
due to an error in the Argus 1.4 post uninstall script.

12.7.1 Workaround

Simply reinstalling the components with YUM just after the upgrade solves the issue:

yum upgrade
(argus is upgraded...)
yum reinstall argus-pap argus-pdp argus-pep-server

12.5. Problem with Nagios plugins for Argus and TMP directory permission 119

Argus Documentation, Release 1.6

120 Chapter 12. Known Issues

CHAPTER 13

Authorization Service: Grid Map File Syntax

13.1 Description

Grid Map files are used to express a mapping from subject attributes in to a local account.

13.2 File Syntax

Each line of a grid map file is either pure whitespace, a comment, or a mapping.

Comments begin with a number or hash sign (#), may be followed with any character and ends at the end of the line.
The following is an example of grid map file which contains only a single comment.

This is a map file with a single comment

A mapping line consists of two parts, the first is a key that identifies the subject that will be mapped. This part is
always enclosed in double quotes (”). The second part is the comma-separated list of targets to which the subject may
be mapped. The first and second parts of the map line are separated by any number of spaces or tabs. The following is
an example of a grid map file mapping an FQAN to an account.

"/vo/atlas/analysis" .atlas

13.3 Subject Keys

The subject key, the first component of a mapping line, may be either an X.509 DN or a Fully Qualified Attribute
Name (FQAN).

If an X.509 DN is used it may be either in the non-standard grid form (where each component is separated by a forward
slash (‘/’) and the CN comes last), or the standard RFC2253 format (where components are separated by a comma (‘,’)
and the CN comes first). The RFC2253 format is preferred. Both formats may be used within a single file and in both
case the following escape sequences may be used:

121

Argus Documentation, Release 1.6

Escape Sequence Represents
\’ a single quote
\" a double quote
\\ a backwards slash
\/ a forward slash
\f a formfeed
\n a new line
\r a carriage return
\t a horizontal tab
\x## the ASCII character corresponding to the given hexadecimal digits
\u#### the UTF-8 character corresponding to the given hexadecimal digits

13.4 Map Targets

The map target, the second component of a mapping line, is a comma separated list of either an account or group
names.

A map target prefixed with a dot . represents a pool account.

122 Chapter 13. Authorization Service: Grid Map File Syntax

CHAPTER 14

Argus YAIM Configuration for EMI

Warning: As of UMD 4.0, YAIM is no longer supported to configure Argus. This page is kept for reference only.

14.1 YAIM Configuration for ARGUS_server

14.1.1 Mandatory General Variables

• SITE_NAME BDII site name

• USERS_CONF

• GROUPS_CONF

• VOS List of supported VO names

• VO_<vo-name>_VOMS_CA_DN VOMS CA DN for each VO name listed in VOS

• VO_<vo-name>_VOMSES VOMS definition for each VO name listed in VOS

More information on these variables available here: https://twiki.cern.ch/twiki/bin/view/LCG/Site-
info_configuration_variables

14.1.2 Mandatory Service Specific Variables

They can be found in /opt/glite/yaim/examples/siteinfo/services/glite-argus_server

Variable Name Description Value type Ver-
sion

ARGUS_HOST Hostname of the Argus node. FQDN
Hostname

1.1.0-1

PAP_ADMIN_DN User certificate DN of the user that will be the PAP
administrator.

Certificate DN 1.0.0-1

14.1.3 Default Service Specific Variables

They can be found in /opt/glite/yaim/defaults/glite-argus_server(.pre|.post)

123

https://twiki.cern.ch/twiki/bin/view/LCG/Site-info_configuration_variables
https://twiki.cern.ch/twiki/bin/view/LCG/Site-info_configuration_variables

Argus Documentation, Release 1.6

Variable Name Description Value type Default Value Version
CONFIG_PAP Set this variable to no if you don’t want yaim to create the PAP configuration files string yes 1.0.0-1
CONFIG_PDP Set this variable to no if you don’t want yaim to create the PDP configuration file string yes 1.0.0-1
CONFIG_PEP Set this variable to no if you don’t want yaim to create the PEP Server configuration file string yes 1.0.0-1
PAP_HOME Home directory of the pap service path ${PAP_HOME:-"/usr/share/argus/pap"} 1.3.0-1
PAP_ENTITY_ID This is a unique identifier for the PAP. It must be a URI (URL or URN) and the same entity ID should be used for all PAP instances that make up a single logical PAP. If a URL is used it doesn’t neet to resolve to any specific webpage. URI ${PAP_ENTITY_ID:-"http://${ARGUS_HOST}/pap"} 1.1.0-1
PAP_HOST Set this variable to another value if PAP_HOST is not installed in the same host as PDP and PEP. IP/DNS name ${ARGUS_HOST} 1.0.0-1
PAP_CONF_INI Configuration file for the pap service path ${PAP_CONF_INI:-"${PAP_HOME}/conf/pap_configuration.ini"} 1.0.0-1
PAP_AUTHZ_INI Configuration file for the pap service authorization policies path ${PAP_AUTHZ_INI:-"${PAP_HOME}/conf/pap_authorization.ini"} 1.0.0-1
PAP_ADMIN_PROPS Configuration properties for the pap-admin client path ${PAP_ADMIN_PROPS:-"${PAP_HOME}/conf/pap-admin.properties"} 1.3.0-1
PAP_REPO_LOCATION Path to the repository directory path ${PAP_REPO_LOCATION:-"${PAP_HOME}/repository"} 1.0.0-1
PAP_POLL_INTERVAL The polling interval (in seconds) for retrieving remote policies number 14400 1.0.0-1
PAP_ORDERING Comma separated list of pap aliases. Example: alias-1, alias-2, ..., alias-n. Defines the order of evaluation of the policies of the paps, that means that the policies of pap “alias-1” are evaluated for first, then the policies of pap “alias-2” and so on. string default 1.0.0-1
PAP_CONSISTENCY_CHECK Forces a consistency check of the repository at startup. boolean false 1.0.0-1
PAP_CONSISTENCY_CHECK_REPAIR if set to true automatically fixes problems detected by the consistency check (usually means deleting the corrupted policies). boolean false 1.0.0-1
PAP_PORT PAP standalone service port port 8150 1.0.0-1
PAP_SHUTDOWN_PORT PAP standalone shutdown service port port 8151 1.0.0-1
PAP_SHUTDOWN_COMMAND PAP standalone shutdown command (password) port generated pseudo random 1.1.0-1
PDP_HOME Home directory of the pdp service path ${PDP_HOME:-"/usr/share/argus/pdp"} 1.3.0-1
PDP_CONF_INI Configuration file for the PDP service path ${PDP_CONF_INI:-"/etc/argus/pdp/pdp.ini"} 1.3.0-1
PDP_ENTITY_ID This is a unique identifier for the PEP. It must be a URI (URL or URN) and the same entity ID should be used for all PEP instances that make up a single logical PEP. If a URL is used it need not resolve to any specific webpage. URI ${PDP_ENTITY_ID:-"http://${ARGUS_HOST}/pdp"} 1.1.0-1
PDP_HOST Set this variable to another value if PDP_HOST is not installed in the same host as PAP and PEP. IP/DNS name ${ARGUS_HOST} 1.4.0-1
PDP_PORT PDP standalone service port port 8152 1.0.0-1
PDP_ADMIN_PORT PDP admin service port port 8153 1.1.0-1
PDP_ADMIN_PASSWORD PDP admin service password for shutdown, reload policy, ..., commands port generated pseudo random 1.1.0-1
PDP_RETENTION_INTERVAL The number of minutes the PDP will retain (cache) a policy retrieved from the PAP. After this time is passed the PDP will again call out to the PAP and retrieve the policy number 240 1.0.0-1
PDP_PAP_ENDPOINTS Space separated list of PAP endpoint URLs for the PDP to use. Endpoints will be tried in turn until one returns a successful response. This provides limited failover support. If more intelligent failover is necessary or load balancing is required, a dedicated load-balancer/failover appliance should be used. URLs ${PDP_PAP_ENDPOINTS:-"https://${PAP_HOST}:8150/pap/services/ProvisioningService"} 1.1.0-1
PEP_HOME Home directory for the pep service path ${PEP_HOME:-"/usr/share/argus/pepd"} 1.3.0-1
PEP_CONF_INI Configuration for the pep service path ${PEP_CONF_INI:-"/etc/argus/pepd/pepd.ini"} 1.3.0-1
PEP_ENTITY_ID This is a unique identifier for the PEP. It must be a URI (URL or URN) and the same entity ID should be used for all PEP instances that make up a single logical PEP. If a URL is used it need not resolve to any specific webpage. URI ${PEP_ENTITY_ID:-"http://${ARGUS_HOST}/pepd"} 1.1.0-1
PEP_HOST Set this variable to another value if PEP_HOST is not installed in the same host as PAP and PDP. But remember to use the hostname and not 127.0.0.1 ! IP/DNS name ${ARGUS_HOST} 1.1.0-1
PEP_PORT PEP service port port 8154 1.0.0-1
PEP_ADMIN_PORT PEP admin service port port 8155 1.1.0-1
PEP_ADMIN_PASSWORD PEP admin service password for shutdown, clear cache, ..., commands port generated pseudo random 1.1.0-1
PEP_MAX_CACHEDRESP The maximum number of responses from any PDP that will be cached. Setting this value to 0 (zero) will disable caching. number 500 1.0.0-1
PEP_PDP_ENDPOINTS Space separated list of PDP endpoint URLs for the PEP to use. Endpoints will be tried in turn until one returns a successful response. This provides limited failover support. If more intelligent failover is necessary or load balancing is required, a dedicated load-balancer/failover appliance should be used. URLs ${PEP_PDP_ENDPOINTS:-"https://${PDP_HOST}:8152/authz"} 1.1.0-1

– Main.ValeryTschopp - 11-Mar-2011

124 Chapter 14. Argus YAIM Configuration for EMI

CHAPTER 15

Indices and tables

• genindex

• modindex

• search

125

	Argus Authorization Service
	Summary
	Argus Service Installation
	Service Components
	Enabled Applications
	Support and Monitoring
	Development Information
	Additional Support
	About the name Argus

	Argus Concepts
	Argus Introduction
	Attribute Based Descriptions
	Identifiers within Argus
	Resource ID
	Conclusion

	Argus: Policy Administration Point (PAP)
	Argus Policy Administration Point (PAP) Installation
	Argus Policy Administration Point (PAP): Configuration
	Argus: Policy Administration Point (PAP): Operation
	Argus Policy Administration Point (PAP): Administration
	The Simplified Policy Language
	Argus: Policy Administration Point (PAP): Kown Issues

	Argus: Policy Decision Point (PDP)
	Argus Policy Decision Point (PDP) Installation
	Argus Policy Decision Point (PDP): Configuration
	Argus Policy Decision Point (PDP): Operation
	Argus: Policy Decision Point (PDP): Troubleshooting

	Argus: Policy Enforcement Point Daemon (PEP)
	Argus PEP Server Installation
	Argus PEP Server: Configuration
	Argus PEP Server: Operation
	Argus PEP Server: Troubleshooting
	Argus PEP Server Policy Information Points (PIP)
	Argus PEP Clients
	Argus PEP Client Library: C API
	Argus PEP Client: Java Programming Interface
	Argus GSI PEP Callout
	Argus PEP Server Obligation Handlers

	Argus Monitoring
	Nagios Probes for Argus (UMD)

	Example of Authorization Requests and Policies
	User Based Authorization
	Per-VO Pilot Job Authorization Policy

	Legacy Pages from Twiki site
	Argus EMIR Publisher Configuration (EMI-3)
	Argus Services (EMI-1) Fine Tuning
	Argus Development Tools
	GGUS User Support for Argus
	Authorization Service: Load and Lifetime Testing
	Authorization Services Testing Summary
	Authorization Services Testing Summary
	Authorization Services Testing Summary
	Argus: Quick Start: Manual Installation
	Argus: Quick Start: Site Policy Setup
	Argus: Quick Start: Manual Configuration
	Quick Start: glite 3.2 Argus Installation

	Argus Service Deployment for EMI
	Requirements
	Installation with YUM
	Update with YUM
	Configuration with YAIM

	Nagios Probes for Argus
	EMIR Publisher for Argus 1.6 (EMI-3)
	Known Issues
	Timeouts for certificates from CAs that use OCSP
	Performance issue with Argus PEP Server (EMI-2, EMI-3, all versions)
	Problem the EMI-3 update and Argus PEP Server v.1.6.1
	Problem with Argus 1.6 (EMI-3) and fetch-crl
	Problem with Nagios plugins for Argus and TMP directory permission
	Problem with Argus 1.5 (EMI-2) and CREAM
	Problem with upgrade from Argus 1.4 (EMI-1) to Argus 1.5 (EMI-2)

	Authorization Service: Grid Map File Syntax
	Description
	File Syntax
	Subject Keys
	Map Targets

	Argus YAIM Configuration for EMI
	YAIM Configuration for ARGUS_server

	Indices and tables

